Optimization of Green Extraction of Antioxidant Compounds from Blackthorn Pomace (Prunus spinosa L.) Using Natural Deep Eutectic Solvents (NADES)
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Sample Preparation
2.3. NADES Preparation
2.4. Preparation of Extracts
2.5. Total Phenol Content
2.6. Total Flavonoid Content
2.7. Antioxidant Activity Assays
2.7.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.7.2. Ferric Reducing Antioxidant Power (FRAP) Assay
2.7.3. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
2.8. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Preliminary Study
3.2. Optimization Study
3.3. Assessment of Model Fitness and Factor Influence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popović, B.M.; Blagojević, B.; Kucharska, A.Z.; Agić, D.; Magazin, N.; Milović, M.; Serra, A.T. Exploring fruits from genus Prunus as a source of potential pharmaceutical agents–In vitro and in silico study. Food Chem. 2021, 358, 129812. [Google Scholar] [CrossRef] [PubMed]
- Ozzengin, B.; Zannou, O.; Koca, I. Quality attributes and antioxidant activity of three wild plums from Prunus spinosa and Prunus domestica species. Meas. Food 2023, 10, 100079. [Google Scholar] [CrossRef]
- Sallustio, V.; Rossi, M.; Marto, J.; Coelho, T.; Chinnici, F.; Mandrone, M.; Chiocchio, I.; Cappadone, C.; Luppi, B.; Bigucci, F. Green extraction of Rosa canina L. and Prunus spinosa L. by NaDES and their encapsulation in chitosan nanoparticles for cosmetic industry. Ind. Crops Prod. 2024, 218, 119042. [Google Scholar] [CrossRef]
- Popović, B.M.; Blagojević, B.; Pavlović, R.Ž.; Mićić, N.; Bijelić, S.; Bogdanović, B.; Mišan, A.; Duarte, C.M.M.; Serra, A.T. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia-from raw data to PCA analysis. Food Chem. 2020, 302, 125373. [Google Scholar] [CrossRef] [PubMed]
- Nistor, O.V.; Milea, Ș.A.; Păcularu-Burada, B.; Andronoiu, D.G.; Râpeanu, G.; Stănciuc, N. Technologically driven approaches for the integrative use of wild blackthorn (Prunus spinosa L.) fruits in foods and nutraceuticals. Antioxidants 2023, 12, 1637. [Google Scholar] [CrossRef]
- Katanić Stanković, J.S.; Mićanović, N.; Grozdanić, N.; Kostić, A.Ž.; Gašić, U.; Stanojković, T.; Popović-Djordjević, J.B. Polyphenolic profile, antioxidant and antidiabetic potential of medlar (Mespilus germanica L.), blackthorn (Prunus spinosa L.) and common hawthorn (Crataegus monogyna Jacq.) fruit extracts from Serbia. Horticulturae 2022, 8, 1053. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Fourmentin, S.; Gomes, M.C.; Lichtfouse, E. (Eds.) Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances; Springer Nature: London, UK, 2020; Volume 56. [Google Scholar]
- Wu, K.; Ren, J.; Wang, Q.; Nuerjiang, M.; Xia, X.; Bian, C. Research progress on the preparation and action mechanism of natural deep eutectic solvents and their application in food. Foods 2022, 11, 3528. [Google Scholar] [CrossRef]
- de los Ángeles Fernández, M.; Boiteux, J.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Anal. Chim. Acta 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Koraqi, H.; Aydar, A.Y.; Pandiselvam, R.; Qazimi, B.; Khalid, W.; Petkoska, A.T.; Çesko, C.; Ramniwas, S.; Asdaq, S.M.B.; Rustagi, S. Optimization of extraction condition to improve blackthorn (Prunus spinosa L.) polyphenols, anthocyanins and antioxidant activity by natural deep eutectic solvent (NADES) using the simplex lattice mixture design method. Microchem. J. 2024, 200, 110497. [Google Scholar] [CrossRef]
- Jurić, T.; Hourani, S.; Petković, M.; Vukosavljević, J.; Ždero Pavlović, R.; Pavlić, B.; Popović, B.M. Exploring Natural Deep Eutectic Solvents for Extraction and Stabilization of Grape Pomace Phytochemicals. Food Bioprocess Technol. 2025, 18, 10968–10985. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Harborne, J.B. Methods of Plant Analysis; Springer: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity appliying an improved ABTS radical cation decolorizatio assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Drăghici-Popa, A.-M.; Boscornea, A.C.; Brezoiu, A.-M.; Tomas, Ș.T.; Pârvulescu, O.C.; Stan, R. Effects of extraction process factors on the composition and antioxidant activity of blackthorn (Prunus spinosa L.) fruit extracts. Antioxidants 2023, 12, 1897. [Google Scholar] [CrossRef] [PubMed]
- Milošević, S.; Markovinović, A.B.; Teslić, N.; Mišan, A.; Pojić, M.; Karačonji, I.B.; Jurica, K.; Lasić, D.; Putnik, P.; Kovačević, D.B. Use of natural deep eutectic solvent (NADES) as a green extraction of antioxidant polyphenols from strawberry tree fruit (Arbutus unedo L.): An optimization study. Microchem. J. 2024, 200, 110284. [Google Scholar] [CrossRef]
- Bertolo, M.R.V.; Martins, V.C.A.; Plepis, A.M.G.; Junior, S.B. Utilization of pomegranate peel waste: Natural deep eutectic solvents as a green strategy to recover valuable phenolic compounds. J. Clean. Prod. 2021, 327, 129471. [Google Scholar] [CrossRef]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents—Ultrafast microwave-assisted NADES preparation and extraction. Food Chem. 2022, 366, 130562. [Google Scholar] [CrossRef]
- Pavlić, B.; Mrkonjić, Ž.; Teslić, N.; Cvetanović Kljakić, A.; Pojić, M.; Mandić, A.; Stupar, A.; Santos, F.; Rita, A.; Duarte, C.; et al. Natural Deep Eutectic Solvent (NADES) Extraction Improves Polyphenol Yield and Antioxidant Activity of Wild Thyme (Thymus serpyllum L.) Extracts. Molecules 2022, 27, 1508. [Google Scholar] [CrossRef]
- Pojić, M.; Teslić, N.; Banjac, V.; Mrkonjić, Ž.; Stupar, A.; Mandić, A.; Mišan, A.; Pavlić, B. Natural deep eutectic solvents for efficient recovery of bioactive compounds from by-product of industrial hemp processing: Pretreatment, modeling and optimization. Ind. Crops Prod. 2024, 222, 119617. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodriguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A.; Rodríguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Ultrasonic-assisted extraction and natural deep eutectic solvents combination: A green strategy to improve the recovery of phenolic compounds from Lavandula pedunculata subsp. lusitanica (chaytor) franco. Antioxidants 2021, 10, 582. [Google Scholar] [CrossRef] [PubMed]
- Limongelli, F.; Aresta, A.M.; Tardugno, R.; Clodoveo, M.L.; Barbarossa, A.; Carocci, A.; Zambonin, C.; Crupi, P.; Panić, M.; Corbo, F. Exploitation of Apulian Salicornia europaea L. via NADES-UAE: Extraction, Antioxidant Activity and Antimicrobial Potential. Molecules 2025, 30, 3367. [Google Scholar] [CrossRef]
- Bouallegue, A.; Casillo, A.; Chaari, F.; La Gatta, A.; Lanzetta, R.; Corsaro, M.M.; Bachoual, R.; Ellouz-Chaabouni, S. Levan from a new isolated Bacillus subtilis AF17: Purification, structural analysis and antioxidant activities. Int. J. Biol. Macromol. 2020, 144, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Cablé, P.-A.; Le Brech, Y.; Mutelet, F. Liquid-liquid extraction of phenolic compounds from aqueous solution using hydrophobic deep eutectic solvents. J. Mol. Liq. 2022, 366, 120266. [Google Scholar] [CrossRef]
- Rahman, M.S.; Roy, R.; Jadhav, B.; Hossain, M.N.; Halim, M.A.; Raynie, D.E. Formulation, structure, and applications of therapeutic and amino acid-based deep eutectic solvents: An overview. J. Mol. Liq. 2021, 321, 114745. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Y.; Zhao, J.; Wang, Y.; Yao, Q.; Li, S. Development and optimization of green extraction of polyphenols in Michelia alba using natural deep eutectic solvents (NADES) and evaluation of bioactivity. Sustain. Chem. Pharm. 2024, 37, 101425. [Google Scholar] [CrossRef]
- Dabetic, N.; Todorovic, V.; Malenovic, A.; Sobajic, S.; Markovic, B. Optimization of Extraction and HPLC–MS/MS Profiling of Phenolic Compounds from Red Grape Seed Extracts Using Conventional and Deep Eutectic Solvents. Antioxidants 2022, 11, 1595. [Google Scholar] [CrossRef] [PubMed]
- Çolak, N.U.; Badem, M.; Şener, S.Ö.; Kanbolat, Ş.; Yaşar, A.; Özgen, U.; Değirmenci, A. Optimization of phenolic acid extraction from Origanum species via novel deep eutectic solvents using response surface methodology. J. Food Meas. Charact. 2025, 19, 6528–6539. [Google Scholar] [CrossRef]
- Alpat, U.; Nar, T.; Karasu, S.; Sagdic, O. Optimization of propolis extraction with natural deep eutectic solvents using central composite design. Phytochem. Lett. 2023, 58, 49–59. [Google Scholar] [CrossRef]
- Bouallegue, A.; Casillo, A.; Chaari, F.; Cimini, D.; Corsaro, M.M.; Bachoual, R.; Ellouz-Chaabouni, S. Statistical optimization of levan: Influence of the parameter on levan structure and angiotensin I-converting enzyme inhibitory. Int. J. Biol. Macromol. 2020, 158, 945–952. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Zhao, J.; Ou, P.; Yao, Q.; Wang, W. Ultrasound-assisted extraction of phenolic compounds from celtuce (Lactuca sativa var. augustana) leaves using natural deep eutectic solvents (NADES): Process optimization and extraction mechanism research. Molecules 2024, 29, 2385. [Google Scholar]
- Zhang, S.; Lin, S.; Zhang, J.; Liu, W. Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from Vitis davidii Foex. pomace: Optimization, identification, antioxidant activity and stability. Heliyon 2024, 10, e33066. [Google Scholar] [CrossRef] [PubMed]
- Balan, N.; Măntăilă, S.; Râpeanu, G.; Stănciuc, N. Enhanced Extraction of Bioactive Compounds from Red Grape Pomace: Optimizing Ultrasound-Assisted Extraction with Ethanol and NaDES as Solvents. Antioxidants 2025, 14, 526. [Google Scholar] [CrossRef]
- Savi, L.K.; Carpiné, D.; Waszczynskyj, N.; Ribani, R.H.; Haminiuk, C.W.I. Influence of temperature, water content and type of organic acid on the formation, stability and properties of functional natural deep eutectic solvents. Fluid Phase Equilibria 2019, 488, 40–47. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef]
- Yang, Z.; Yue, S.-J.; Gao, H.; Zhang, Q.; Xu, D.-Q.; Zhou, J.; Li, J.-J.; Tang, Y.-P. Natural deep eutectic solvent-ultrasound assisted extraction: A green approach for ellagic acid extraction from Geum japonicum. Front. Nutr. 2023, 9, 1079767. [Google Scholar] [CrossRef]
- Qi, X.-L.; Peng, X.; Huang, Y.-Y.; Li, L.; Wei, Z.-F.; Zu, Y.-G.; Fu, Y.-J. Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Ind. Crops Prod. 2015, 70, 142–148. [Google Scholar] [CrossRef]
- Cabrera, L.; Xavier, L.; Zecchi, B. Extraction of phenolic compounds with antioxidant activity from olive pomace using natural deep eutectic solvents: Modelling and optimization by response surface methodology. Discov. Food 2024, 4, 29. [Google Scholar] [CrossRef]
- Ivanović, M.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef]
- Craveiro, R.; Aroso, I.; Flammia, V.; Carvalho, T.; Viciosa, M.T.; Dionísio, M.; Barreiros, S.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Properties and thermal behavior of natural deep eutectic solvents. J. Mol. Liq. 2016, 215, 534–540. [Google Scholar] [CrossRef]
- Vo, T.P.; Pham, T.V.; Weina, K.; Tran, T.N.H.; Vo, L.T.V.; Nguyen, P.T.; Bui, T.L.H.; Phan, T.H.; Nguyen, D.Q. Green extraction of phenolics and flavonoids from black mulberry fruit using natural deep eutectic solvents: Optimization and surface morphology. BMC Chem. 2023, 17, 119. [Google Scholar] [CrossRef]


| Mark | Hydrogen Bond Acceptor | Hydrogen Bond Donor | Molar Ratio | Water Content |
|---|---|---|---|---|
| N4 | Choline chloride (ChCl) | Citric acid (CitA) and urea (Ur) | 2:1:1 | 20 |
| N5 | Choline chloride (ChCl) | Lactic acid (LacA) and 1,2-propanediol (1,2-pd) | 1:1:1 | 20 |
| N6 | Choline chloride (ChCl) | Lactic acid (LacA) and urea (Ur) | 1:1:1 | 20 |
| N7 | Choline chloride (ChCl) | Lactic acid (LacA) and glycerol (Gly) | 1:1:1 | 20 |
| N8 | Choline chloride (ChCl) | Lactic acid (LacA) and fructose (Fru) | 2:1:1 | 20 |
| N10 | Choline chloride (ChCl) | Glycerol (Gly) | 2:1 | 20 |
| N12 | Proline (Pro) | Lactic acid (LacA) | 1:2 | 20 |
| N13 | Choline chloride (ChCl) | Glycerol (Gly) | 1:2 | 20 |
| N14 | Choline chloride (ChCl) | Glycerol (Gly) | 1:1 | 20 |
| N15 | Choline chloride (ChCl) | 1,2-propanediol (1,2-pd) | 1:1 | 20 |
| Factors | Responses | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Run | A: Extraction Time [min] | B: Temperature [°C] | C: L/S Ratio [mL/g] | D: WC [%] | E: NADES | TPC [mg GAE/g DW] | DPPH [mg TE/g DW] | |||||
| 1 | 1 | 60 | 1 | 50 | 1 | 20 | −1 | 15 | Level 1 | N12 | 29.68 | 33.56 |
| 2 | 1 | 60 | 1 | 50 | −1 | 10 | −1 | 15 | Level 2 | N14 | 24.92 | 16.05 |
| 3 | −1 | 30 | 1 | 50 | −1 | 10 | −1 | 15 | Level 1 | N12 | 23.54 | 23.11 |
| 4 | 1 | 60 | −1 | 40 | −1 | 10 | 1 | 20 | Level 2 | N14 | 22.68 | 16.39 |
| 5 | 1 | 60 | −1 | 40 | −1 | 10 | −1 | 15 | Level 1 | N12 | 24.18 | 24.76 |
| 6 | 1 | 60 | −1 | 40 | 1 | 20 | 1 | 20 | Level 1 | N12 | 25.22 | 45.21 |
| 7 | −1 | 30 | 1 | 50 | 1 | 20 | −1 | 15 | Level 2 | N14 | 26.36 | 29.20 |
| 8 | −1 | 30 | 1 | 50 | 1 | 20 | 1 | 20 | Level 1 | N12 | 27.90 | 48.32 |
| 9 | −1 | 30 | −1 | 40 | −1 | 10 | −1 | 15 | Level 2 | N14 | 23.72 | 21.98 |
| 10 | −1 | 30 | −1 | 40 | 1 | 20 | −1 | 15 | Level 1 | N12 | 24.61 | 44.24 |
| 11 | −1 | 30 | −1 | 40 | 1 | 20 | 1 | 20 | Level 2 | N14 | 26.03 | 25.79 |
| 12 | 1 | 60 | 1 | 50 | −1 | 10 | 1 | 20 | Level 1 | N12 | 29.81 | 32.73 |
| 13 | 1 | 60 | −1 | 40 | 1 | 20 | −1 | 15 | Level 2 | N14 | 26.70 | 31.15 |
| 14 | −1 | 30 | 1 | 50 | −1 | 10 | 1 | 20 | Level 2 | N14 | 23.56 | 23.08 |
| 15 | 1 | 60 | 1 | 50 | 1 | 20 | 1 | 20 | Level 2 | N14 | 28.42 | 27.49 |
| 16 | −1 | 30 | −1 | 40 | −1 | 10 | 1 | 20 | Level 1 | N12 | 21.18 | 28.46 |
| Factors | Responses | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Run | A: Extraction Time [min] | B: Temperature [°C] | C: L/S ratio [mL/g] | TPC [mg GAE/g DW] | TFC [mg QE/g DW] | DPPH [mg TE/g DW] | FRAP [mg Fe2+/g DW] | ABTS [mg GAE/g DW] | |||
| 1 | −1 | 30 | 0 | 55 | 1 | 25 | 28.53 | 13.81 | 40.10 | 19.34 | 86.90 |
| 2 | 0 | 60 | 0 | 55 | 0 | 20 | 34.12 | 16.04 | 45.12 | 21.78 | 91.09 |
| 3 | 1 | 90 | 1 | 65 | 0 | 20 | 55.81 | 35.97 | 62.74 | 31.03 | 142.50 |
| 4 | 0 | 60 | 0 | 55 | 0 | 20 | 34.48 | 16.23 | 49.55 | 23.45 | 101.04 |
| 5 | 1 | 90 | 0 | 55 | −1 | 15 | 40.48 | 18.40 | 50.34 | 20.67 | 107.67 |
| 6 | −1 | 30 | 0 | 55 | −1 | 15 | 27.92 | 12.78 | 41.03 | 17.05 | 87.97 |
| 7 | 0 | 60 | 1 | 65 | 1 | 25 | 54.25 | 24.11 | 65.69 | 33.10 | 142.93 |
| 8 | 0 | 60 | 0 | 55 | 0 | 20 | 34.41 | 15.69 | 45.83 | 23.80 | 100.07 |
| 9 | 1 | 90 | 0 | 55 | 1 | 25 | 41.72 | 18.64 | 55.32 | 25.84 | 122.64 |
| 10 | 0 | 60 | −1 | 45 | −1 | 15 | 27.22 | 12.01 | 33.17 | 15.84 | 71.28 |
| 11 | 0 | 60 | 0 | 55 | 0 | 20 | 35.45 | 16.25 | 45.64 | 23.32 | 106.76 |
| 12 | 0 | 60 | 0 | 55 | 0 | 20 | 36.79 | 16.49 | 48.67 | 23.98 | 110.14 |
| 13 | 0 | 60 | −1 | 45 | 1 | 25 | 25.67 | 11.88 | 38.02 | 20.81 | 80.78 |
| 14 | 1 | 90 | −1 | 45 | 0 | 20 | 27.60 | 12.61 | 39.38 | 25.51 | 90.86 |
| 15 | −1 | 30 | 1 | 65 | 0 | 20 | 42.06 | 20.06 | 55.42 | 27.16 | 120.77 |
| 16 | 0 | 60 | 1 | 65 | −1 | 15 | 47.61 | 30.64 | 50.70 | 24.57 | 122.35 |
| 17 | −1 | 30 | −1 | 45 | 0 | 20 | 23.95 | 10.92 | 36.56 | 16.91 | 79.09 |
| Response | Source | SS | df | MS | F-Value | p-Value |
|---|---|---|---|---|---|---|
| TPC | Model | 1462.24 | 9 | 162.47 | 72.45 | 4.5 × 10−6 |
| Residual | 15.70 | 7 | 2.24 | |||
| Lack of Fit | 10.89 | 3 | 3.63 | 3.02 | 0.15656 | |
| Pure Error | 4.80 | 4 | 1.20 | |||
| Cor Total | 1477.94 | 16 | ||||
| R2 | 0.99 | |||||
| CV [%] | 4.12 | |||||
| TFC | Model | 724.19 | 9 | 80.47 | 37.63 | 4.17 × 10−5 |
| Residual | 14.97 | 7 | 2.14 | |||
| Lack of Fit | 14.61 | 3 | 4.87 | 53.85 | 0.001086 | |
| Pure Error | 0.36 | 4 | 0.09 | |||
| Cor Total | 739.16 | 16 | ||||
| R2 | 0.98 | |||||
| CV [%] | 8.22 | |||||
| DPPH | Model | 1209.50 | 9 | 134.39 | 20.87 | 0.0003 |
| Residual | 45.07 | 7 | 6.44 | |||
| Lack of Fit | 29.06 | 3 | 9.69 | 2.42 | 0.20646 | |
| Pure Error | 16.01 | 4 | 4 | |||
| Cor Total | 1254.57 | 16 | ||||
| R2 | 0.96 | |||||
| CV [%] | 5.35 | |||||
| FRAP | Model | 338.93 | 9 | 37.66 | 22.47 | 0.000233 |
| Residual | 11.73 | 7 | 1.68 | |||
| Lack of Fit | 8.69 | 3 | 2.90 | 3.80 | 0.114756 | |
| Pure Error | 3.04 | 4 | 0.76 | |||
| Cor Total | 350.66 | 16 | ||||
| R2 | 0.97 | |||||
| CV [%] | 5.58 | |||||
| ABTS | Model | 6809.73 | 9 | 756.64 | 14.93 | 0.000878 |
| Residual | 354.77 | 7 | 50.68 | |||
| Lack of Fit | 142.30 | 3 | 47.43 | 0.89 | 0.517771 | |
| Pure Error | 212.47 | 4 | 53.12 | |||
| Cor Total | 7164.50 | 16 | ||||
| R2 | 0.95 | |||||
| CV [%] | 6.86 |
| Input and Output Parameters | Initial Values for Blackthorn Pomace | Initial Values for Blackthorn Juice | Predicted Values for Blackthorn Pomace | Obtained Values for Blackthorn Pomace | Obtained Values for Blackthorn Juice |
|---|---|---|---|---|---|
| Extraction time [min] | 30 | 30 | 90 | 90 | 90 |
| Temperature [°C] | 40 | 40 | 65 | 65 | 65 |
| S/L ratio [mL/g] | 10 | 10 | 22.65 | 22.65 | 22.65 |
| TPC [mg GAE/g DW] | 17.45 ± 2.21 | 26.18 ± 0.09 | 58.94 | 57.03 ± 1.88 | 91.74 ± 2.77 |
| TFC [mg QE/g DW] | 33.50 | 23.27 ± 0.49 | 1.97 ± 0.32 | ||
| DPPH [mg TE/g DW] | 18.59 ± 0.27 | 12.66 ± 0.20 | 67.76 | 71.74 ± 3.44 | 140.99 ± 5.84 |
| FRAP [mg Fe2+/g DW] | 33.05 | 32.81 ± 0.71 | 60.86 ± 0.82 | ||
| ABTS [mg GAE/g DW] | 153.58 | 145.39 ± 4.48 | 218.59 ± 3.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hourani, S.; Vukosavljević, J.; Teslić, N.; Ždero Pavlović, R.; Popović, B.M.; Pavlić, B. Optimization of Green Extraction of Antioxidant Compounds from Blackthorn Pomace (Prunus spinosa L.) Using Natural Deep Eutectic Solvents (NADES). Processes 2025, 13, 3737. https://doi.org/10.3390/pr13113737
Hourani S, Vukosavljević J, Teslić N, Ždero Pavlović R, Popović BM, Pavlić B. Optimization of Green Extraction of Antioxidant Compounds from Blackthorn Pomace (Prunus spinosa L.) Using Natural Deep Eutectic Solvents (NADES). Processes. 2025; 13(11):3737. https://doi.org/10.3390/pr13113737
Chicago/Turabian StyleHourani, Sara, Jelena Vukosavljević, Nemanja Teslić, Ružica Ždero Pavlović, Boris M. Popović, and Branimir Pavlić. 2025. "Optimization of Green Extraction of Antioxidant Compounds from Blackthorn Pomace (Prunus spinosa L.) Using Natural Deep Eutectic Solvents (NADES)" Processes 13, no. 11: 3737. https://doi.org/10.3390/pr13113737
APA StyleHourani, S., Vukosavljević, J., Teslić, N., Ždero Pavlović, R., Popović, B. M., & Pavlić, B. (2025). Optimization of Green Extraction of Antioxidant Compounds from Blackthorn Pomace (Prunus spinosa L.) Using Natural Deep Eutectic Solvents (NADES). Processes, 13(11), 3737. https://doi.org/10.3390/pr13113737

