Combined Effects of Taro Starch-Based Edible Coating, Osmotic Dehydration, and Ultrasonication on Drying Kinetics and Quality Attributes of Pears
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Pre-Treatments
2.3. Convective Hot Air Drying
2.4. Drying Kinetics and Mathematical Modeling
2.5. Color Measurement
2.6. Total Phenolic Content, and Antioxidant Activity
2.7. Determination of Vitamin C by HPLC
2.8. Morphological Analysis by SEM
2.9. Rehydration Capacity Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics and Modeling
3.2. Bioactive Properties
3.3. Color
3.4. Microstructure
3.5. Rehydration Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cevher, E.Y.; Öztekin, Y.B. Mechanical behavior of Deveci pear cultivar affected by maturation. Turk. J. Food Agric. Sci. 2019, 1, 39–43. [Google Scholar]
- Özcan, M.M.; Uslu, N. The effect of thermal treatment on antioxidant activity and changes in bioactive and phenolic compounds of three pear (Pyrus spp.) varieties slices. Food Humanit. 2023, 1, 281–288. [Google Scholar] [CrossRef]
- Erbil, N.; Murathan, Z.T.; Arslan, M.; Ilcim, A.; Sayin, B. Antimicrobial, Antioxidant, and Antimutagenic Activities of Five Turkish Pear Cultivars. Erwerbs-Obstbau 2018, 60, 203–209. [Google Scholar] [CrossRef]
- Güler, H.Ö.; Tuncer, A.D.; Şirin, C.; Usta, H. Effect of forced convection drying on the thin layer characteristics of ‘Deveci’ pear (Pyrus communis L.). In Proceedings of the 3rd International Conference on Agriculture, Food, Veterinary and Pharmacy Sciences, Trabzon, Türkiye, 16–18 April 2019; pp. 94–101. [Google Scholar]
- Yılmaz, M. Determination of Optimum Conditions for Convectional and Microwave Drying of Osmo-Dehydrated Pear Slices. Ph.D. Thesis, Bolu Abant İzzet Baysal University, Bolu, Türkiye, 2022. [Google Scholar]
- Al Juhaimi, F.; Uslu, N.; Özcan, M.M.; EL Babiker, E.F.; Ghafoor, K. Effect of drying on antioxidant activity, total phenol and mineral contents of pear fruits. J. Food Saf. Food Qual. 2016, 67, 164–167. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.H.; Wang, J.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1408–1432. [Google Scholar] [CrossRef] [PubMed]
- Petikirige, J.; Karim, A.; Millar, G. Effect of drying techniques on quality and sensory properties of tropical fruits. Int. J. Food Sci. Technol. 2022, 57, 6963–6979. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Barroca, M.J.; Gonçalves, F.J.; Alves, M.; Oliveira, S.; Correia, P.M.R. Effect of Drying on Total Phenolic Compounds, Antioxidant Activity, and Kinetics Decay in Pears. Int. J. Fruit Sci. 2015, 15, 173–186. [Google Scholar] [CrossRef]
- Masamba, K.G.; Mkandawire, M.; Chiputula, J.; Nyirenda, K.S. Evaluation of sensory quality attributes and extent of vitamin C degradation in dried pineapple, mango and banana fruit pieces pre-treated with sodium metabisulphite and lemon juice. Int. Res. J. Agric. Sci. 2013, 3, 226–234. [Google Scholar]
- Demir, H.; Demir, H.; Lončar, B.; Pezo, L.; Brandić, I.; Voća, N.; Yilmaz, F. Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics. Energies 2023, 16, 1687. [Google Scholar] [CrossRef]
- Santagata, G.; Mallardo, S.; Fasulo, G.; Lavermicocca, P.; Valerio, F.; Di Biase, M.; Di Stasio, M.; Malinconico, M.; Volpe, M.G. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chem. 2018, 258, 104–110. [Google Scholar] [CrossRef]
- Kian-Pour, N. Effect of Biopolymer Dip-Coating Pretreatments as a Non-Thermal Green Technology on Physicochemical Characteristics, Drying, and Rehydration Kinetics of Santa Maria Pears. Foods 2023, 12, 2466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wei, Q.; Liu, C.; Li, D.; Liu, C.; Jiang, N. Comparison of four pretreatments on the drying behavior and quality of taro (Colocasia esculenta L. Schott) slices during intermittent microwave vacuum-assisted drying. Dry. Technol. 2017, 35, 1347–1357. [Google Scholar] [CrossRef]
- Jayanti, E.T.; Purwati, N.; Ariska, W. The effect of taro starch (Colocasia esculenta L. Schoott) edible coating on the quality of red chili (Capsicum annuum L.). J. Penelit. Pendidik. IPA 2024, 10, 437–441. [Google Scholar] [CrossRef]
- Meindrawan, B.; Kusuma, A.W.; Yuniarti, R.; Nabila, F.G.; Rahmayanti, D.; Pamela, V.Y. Application of Edible Coating from Beneng Taro Starch, Chitosan and Ginger Essential Oil to Maintain the Quality of Mango. J. Trop. Food Agroind. Technol. 2024, 5, 66–73. [Google Scholar] [CrossRef]
- Patandianan, D.L.; Hartiati, A.; Harsojuwono, B.A. Variation of Taro Starch-Carrageenan Edible Coating Composite Material and Glycerol Concentration on Peeled Salak Fruit Characteristics. J. Rekay. Manaj. Agroind. 2025, 13, 428–439. [Google Scholar]
- More, P.R.; Pegu, K.; Arya, S.S. Development and Characterization of Taro Starch-Casein Composite Bioactive Films Functionalized by Micellar Pomegranate Peel Extract (MPPE). Int. J. Biol. Macromol. 2022, 220, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Castelló, M.; Igual, M.; Fito, P.; Chiralt, A. Influence of osmotic dehydration on texture, respiration and microbial stability of apple slices (Var. Granny Smith). J. Food Eng. 2009, 91, 1–9. [Google Scholar] [CrossRef]
- Ribeiro, A.S.d.C.; Aguiar-Oliveira, E.; Maldonado, R.R. Optimization of osmotic dehydration of pear followed by conventional drying and their sensory quality. LWT-Food Sci. Technol. 2016, 72, 407–415. [Google Scholar] [CrossRef]
- Hossain, M.A.; Shaha, L.C.; Romen, T.I.; Sarkar, A.; Biswas, R.; Ahmed, S.; Islam, M.A.; Muntasir, F.; Patwary, M.A.; Morais, R.M.S.C.; et al. Synergistic Effect of Ultrasound and Osmotic Pretreatment on the Drying Kinetics and Antioxidant Properties of Satkara (Citrus macroptera): A Novel Preservation Strategy. Processes 2025, 13, 384. [Google Scholar] [CrossRef]
- Nowacka, M.; Tappi, S.; Tylewicz, U.; Luo, W.; Rocculi, P.; Wesoły, M.; Ciosek-Skibińska, P.; Dalla Rosa, M.; Witrowa-Rajchert, D. Metabolic and sensory evaluation of ultrasound-assisted osmo-dehydrated kiwifruit. Innov. Food Sci. Emerg. Technol. 2018, 50, 26–33. [Google Scholar] [CrossRef]
- Yilmaz, D.; Tekin-Cakmak, Z.H.; Karasu, S. Impact of Ultrasound Pretreatment and Temperature on Drying Kinetics and Quality Characteristics of Blood Orange Slices: Comparison with Different Drying Methods. Processes 2025, 13, 1596. [Google Scholar] [CrossRef]
- Salehi, F.; Ghazvineh, S.; Inanloodoghouz, M. Effects of edible coatings and ultrasonic pretreatment on the phenolic content, antioxidant potential, drying rate, and rehydration ratio of sweet cherry. Ultrason. Sonochem. 2023, 99, 106565. [Google Scholar] [CrossRef]
- Nowacka, M.; Tylewicz, U.; Romani, S.; Dalla Rosa, M.; Witrowa-Rajchert, D. Influence of ultrasound-assisted osmotic dehydration on the main quality parameters of kiwifruit. Innov. Food Sci. Emerg. Technol. 2017, 41, 71–78. [Google Scholar] [CrossRef]
- Nowacka, M.; Fijalkowska, A.; Dadan, M.; Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D. Effect of ultrasound treatment during osmotic dehydration on bioactive compounds of cranberries. Ultrasonics 2018, 83, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Wongsagonsup, R.; Nateelerdpaisan, T.; Gross, C.; Suphantharika, M.; Belur, P.D.; Agoo, E.M.G.; Janairo, J.I.B. Physicochemical properties and in vitro digestibility of flours and starches from taro cultivated in different regions of Thailand. Int. J. Food Sci. Technol. 2021, 56, 2395–2406. [Google Scholar] [CrossRef]
- Briones, M.F.; Jazmin, P.F.; Pajarillaga, B.E.; Juvinal, J.G.; Leon, A.A.D.; Rustia, J.M.; Tuates, A.M., Jr. Biodegradable film from wild taro Colocasia esculenta (L.) Schott starch. Agric. Eng. Int. CIGR J. 2020, 22, 152–155. [Google Scholar]
- Official Methods of Analysis, 15th ed.; Method 934.06; Association of Official Analytical Chemists: Arlington, VA, USA, 1990.
- Rajabi, F.; Karimi, S.; Abbasi, H.; Layeghinia, N. Influence of edible coatings pretreatment on the performance of microwave and combined microwave-hot air drying of kiwifruit. Food Bioprod. Process. 2025, 153, 286–297. [Google Scholar] [CrossRef]
- Sacilik, K. Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J. Food Eng. 2007, 79, 23–30. [Google Scholar] [CrossRef]
- Salehi, F.; Satorabi, M. Influence of Infrared Drying on Drying Kinetics of Apple Slices Coated with Basil Seed and Xanthan Gums. Int. J. Fruit Sci. 2021, 21, 519–527. [Google Scholar] [CrossRef]
- Fikry, M.; Benjakul, S.; Al-Ghamdi, S.; Tagrida, M.; Prodpran, T. Evaluating Kinetics of Convection Drying and Microstructure Characteristics of Asian Seabass Fish Skin without and with Ultrasound Pretreatment. Foods 2023, 12, 3024. [Google Scholar] [CrossRef]
- Lewis, W.K. The rate of drying of solid materials. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Page, G.E. Factors Influencing the Maximum Rates of Air-Drying Shelled Corn in Thin Layers. Master’s Thesis, Purdue University, West Lafayette, IN, USA, 1949. [Google Scholar]
- Henderson, S.; Pabis, S. Grain drying theory: IV. The effect of air flow rate on the drying index. J. Agric. Eng. Res. 1962, 7, 85–89. [Google Scholar]
- Yagcioglu, A. Drying characteristic of laurel leaves under different conditions. In Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, Adana, Türkiye, 26–27 May 1999. [Google Scholar]
- Wang, C.; Singh, R. A Single Layer Drying Equation for Rough Rice; ASAE Paper; ASAE: St. Joseph, MI, USA, 1978. [Google Scholar]
- Doymaz, İ.; İsmail, O. Experimental characterization and modelling of drying of pear slices. Food Sci. Biotechnol. 2012, 21, 1377–1381. [Google Scholar] [CrossRef]
- Subhashree, S.N.; Sunoj, S.; Xue, J.; Bora, G.C. Quantification of browning in apples using colour and textural features by image analysis. Food Qual. Saf. 2017, 1, 221–226. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, W.; Yan, L.; Liu, W.; Yao, F.; Liu, C.; Zheng, L. Effects of vacuum microwave combined with freeze-drying on the physicochemical properties, phenolic compounds, and antioxidant capacity of pear fruit slices. J. Food Sci. 2023, 88, 2807–2820. [Google Scholar] [CrossRef]
- Kırca, L.; Kırca, S.; Aygün, A. Organic acid, phenolic compound and antioxidant contents of fresh and dried fruits of pear (Pyrus Communis L.) cultivars. Erwerbs-Obstbau 2023, 65, 677–691. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Clavería, R.; Quispe, I.; Vergara, J.; Uribe, E.; Paez, H.; Di Scala, K. Effect of air temperature on drying kinetics and quality characteristics of osmo-treated jumbo squid (Dosidicus gigas). LWT-Food Sci. Technol. 2011, 44, 16–23. [Google Scholar] [CrossRef]
- Silva, K.S.; Garcia, C.C.; Amado, L.R.; Mauro, M.A. Effects of Edible Coatings on Convective Drying and Characteristics of the Dried Pineapple. Food Bioprocess Technol. 2015, 8, 1465–1475. [Google Scholar] [CrossRef]
- Fufa, D.D.; Bekele, T.; Tamene, A.; Bultosa, G. Drying kinetic models, thermodynamics, physicochemical qualities, and bioactive compounds of avocado (Persea americana Mill. Hass variety) seeds dried using various drying methods. Heliyon 2025, 11, e41058. [Google Scholar] [CrossRef]
- Shukla, R.M. Drying kinetics of pear slices in greenhouse solar dryer. J. Adv. Food Sci. Technol. 2024, 1, 17–27. [Google Scholar] [CrossRef]
- Önal, B.; Adiletta, G.; Di Matteo, M.; Russo, P.; Ramos, I.N.; Silva, C.L.M. Microwave and ultrasound pre-treatments for drying of the “Rocha” pear: Impact on phytochemical parameters, color changes and drying kinetics. Foods 2021, 10, 853. [Google Scholar] [CrossRef]
- Lima, L.S.L.; da Silva, W.P.; Pereira, J.C.A.; Diniz, P.S.E.S.; Silva, C.M. Study of continuous and intermittent drying of pear through mathematical and diffusion models. J. Agric. Stud. 2022, 10, 29–47. [Google Scholar] [CrossRef]
- Lopez-Quiroga, E.; Prosapio, V.; Fryer, P.J.; Norton, I.T.; Bakalis, S. Model discrimination for drying and rehydration kinetics of freeze-dried tomatoes. J. Food Process Eng. 2020, 43, e13192. [Google Scholar] [CrossRef]
- Alibaş, İ.; Yılmaz, A.; Günaydın, S.; Arkain, B. Influence of Drying Methods on Drying Kinetics and Color Parameters. Turk. J. Agric. Food Sci. Technol. 2021, 9, 897–908. [Google Scholar]
- Penkov, N.V. Relationships between Molecular Structure of Carbohydrates and Their Dynamic Hydration Shells Revealed by Terahertz Time-Domain Spectroscopy. Int. J. Mol. Sci. 2021, 22, 11969. [Google Scholar] [CrossRef]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties. Antioxidants 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Todisco, K.M.; Janzantti, N.S.; Santos, A.B.; Galli, F.S.; Mauro, M.A. Effects of temperature and pectin edible coatings with guava byproducts on the drying kinetics and quality of dried red guava. J. Food Sci. Technol. 2018, 55, 4735–4746. [Google Scholar] [CrossRef]
- Rudy, S.; Dziki, D.; Biernacka, B.; Polak, R.; Krzykowski, A.; Domin, M.; Rudzki, G.; Kachel-Górecka, M. Drying Kinetics and Physicochemical Characteristics of Dehydrated Jerusalem Artichoke (Helianthus tuberosus L.). Processes 2025, 13, 2553. [Google Scholar] [CrossRef]
- Araujo, B.Z.R.; Martins, V.F.R.; Pintado, M.E.; Morais, R.M.S.C.; Morais, A.M.M.B. A Comparative Study of Drying Technologies for Apple and Ginger Pomace: Kinetic Modeling and Antioxidant Properties. Processes 2024, 12, 2096. [Google Scholar] [CrossRef]
- Nowacka, M.; Tylewicz, U.; Laghi, L.; Dalla Rosa, M.; Witrowa-Rajchert, D. Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem. 2014, 14, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Pieczywek, P.M.; Kozioł, A.; Konopacka, D.; Cybulska, J.; Zdunek, A. Changes in cell wall stiffness and microstructure in ultrasonically treated apple. J. Food Eng. 2017, 197, 1–8. [Google Scholar] [CrossRef]
- Turkmen, F.; Karasu, S.; Karadag, A. Effects of Different Drying Methods and Temperature on the Drying Behavior and Quality Attributes of Cherry Laurel Fruit. Processes 2020, 8, 761. [Google Scholar] [CrossRef]
- Al-Khuseibi, M.K.; Sablani, S.S.; Perera, C.O. Comparison of water blanching and high hydrostatic pressure effects on drying kinetics and quality of potato. Dry. Technol. 2005, 23, 2449–2461. [Google Scholar] [CrossRef]


| Model | Equation | Reference |
|---|---|---|
| Lewis | MR = exp(−kt) | [34] |
| Page | MR = exp(−ktn) | [35] |
| Henderson and Pabis | MR = a exp(−kt) | [36] |
| Logarithmic | MR = a exp(−kt) + c | [37] |
| Wang and Sing | MR = 1 + at + bt2 | [38] |
| Sample | T °C | Lewis | Page | Handerson and Pabis | Logarithmic | Wang and Sing | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| R2 | RMSE | χ2 | R2 | RMSE | χ2 | R2 | RMSE | χ2 | R2 | RMSE | χ2 | R2 | RMSE | χ2 | ||
| Control | 60 | 0.9751 | 0.0440 | 0.0020 | 0.9978 | 0.0130 | 0.0002 | 0.9874 | 0.0313 | 0.0010 | 0.9934 | 0.0226 | 0.0005 | 0.9939 | 0.0217 | 0.0005 |
| 70 | 0.9821 | 0.0372 | 0.0014 | 0.9955 | 0.0187 | 0.0004 | 0.9896 | 0.0284 | 0.0008 | 0.9915 | 0.0256 | 0.0007 | 0.9955 | 0.0187 | 0.0004 | |
| 80 | 0.9677 | 0.0555 | 0.0031 | 0.9975 | 0.0153 | 0.0002 | 0.9805 | 0.0432 | 0.0020 | 0.9885 | 0.0331 | 0.0012 | 0.9947 | 0.0224 | 0.0005 | |
| F | 60 | 0.9748 | 0.0445 | 0.0020 | 0.9973 | 0.0147 | 0.0002 | 0.9868 | 0.0322 | 0.0011 | 0.9923 | 0.0246 | 0.0006 | 0.9935 | 0.0227 | 0.0005 |
| 70 | 0.9627 | 0.0594 | 0.0036 | 0.9983 | 0.0126 | 0.0002 | 0.9797 | 0.0438 | 0.0020 | 0.9897 | 0.0312 | 0.0010 | 0.9916 | 0.0282 | 0.0008 | |
| 80 | 0.9663 | 0.0557 | 0.0032 | 0.9981 | 0.0132 | 0.0002 | 0.9814 | 0.0415 | 0.0018 | 0.9909 | 0.0289 | 0.0009 | 0.9929 | 0.0256 | 0.0007 | |
| UF | 60 | 0.9754 | 0.0446 | 0.0020 | 0.9978 | 0.0134 | 0.0002 | 0.9861 | 0.0335 | 0.0012 | 0.9934 | 0.0231 | 0.0006 | 0.9953 | 0.0195 | 0.0004 |
| 70 | 0.9709 | 0.0503 | 0.0026 | 0.9977 | 0.0141 | 0.0002 | 0.9828 | 0.0386 | 0.0016 | 0.9915 | 0.0271 | 0.0008 | 0.9942 | 0.0224 | 0.0005 | |
| 80 | 0.9789 | 0.0424 | 0.0018 | 0.9934 | 0.0238 | 0.0006 | 0.9870 | 0.0332 | 0.0012 | 0.9879 | 0.0320 | 0.0011 | 0.9951 | 0.0205 | 0.0004 | |
| OF | 60 | 0.9569 | 0.0638 | 0.0041 | 0.9960 | 0.0194 | 0.0004 | 0.9705 | 0.0527 | 0.0029 | 0.9936 | 0.0245 | 0.0006 | 0.9960 | 0.0195 | 0.0004 |
| 70 | 0.9455 | 0.0748 | 0.0057 | 0.9959 | 0.0205 | 0.0004 | 0.9633 | 0.0614 | 0.0039 | 0.9893 | 0.0331 | 0.0012 | 0.9915 | 0.0295 | 0.0009 | |
| 80 | 0.9490 | 0.0735 | 0.0055 | 0.9971 | 0.0177 | 0.0003 | 0.9660 | 0.0600 | 0.0038 | 0.9875 | 0.0364 | 0.0014 | 0.9927 | 0.0279 | 0.0008 | |
| UOF | 60 | 0.9727 | 0.0467 | 0.0022 | 0.9965 | 0.0168 | 0.0003 | 0.9868 | 0.0325 | 0.0011 | 0.9913 | 0.0264 | 0.0007 | 0.9913 | 0.0264 | 0.0007 |
| 70 | 0.9775 | 0.0433 | 0.0019 | 0.9966 | 0.0167 | 0.0003 | 0.9884 | 0.0311 | 0.0010 | 0.9917 | 0.0262 | 0.0007 | 0.9946 | 0.0212 | 0.0005 | |
| 80 | 0.9776 | 0.0437 | 0.0020 | 0.9935 | 0.0236 | 0.0006 | 0.9865 | 0.0340 | 0.0012 | 0.9878 | 0.0323 | 0.0011 | 0.9943 | 0.0220 | 0.0005 | |
| Sample | T °C | Lewis | Page | Henderson and Pabis | Logarithmic | Wang and Sing | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| k | k | n | k | a | a | k | c | a | b | ||
| Control | 60 | 0.0051 | 0.0011 | 1.2945 | 0.0056 | 1.0898 | 1.2352 | 0.0041 | −0.1821 | −0.0041 | 0.000004 |
| 70 | 0.0073 | 0.0021 | 1.3985 | 0.0079 | 1.0716 | 1.1277 | 0.0067 | −0.0766 | −0.0060 | 0.000010 | |
| 80 | 0.0128 | 0.0025 | 1.2175 | 0.0142 | 1.1123 | 1.1822 | 0.0111 | −0.1072 | −0.0097 | 0.000024 | |
| F | 60 | 0.0051 | 0.0011 | 1.2931 | 0.0056 | 1.0901 | 1.2161 | 0.0042 | −0.1610 | −0.0041 | 0.000005 |
| 70 | 0.0087 | 0.0011 | 1.4247 | 0.0098 | 1.1246 | 1.2367 | 0.0072 | −0.1572 | −0.0067 | 0.000012 | |
| 80 | 0.0102 | 0.0017 | 1.3893 | 0.0114 | 1.1130 | 1.2358 | 0.0082 | −0.1665 | −0.0078 | 0.000016 | |
| UF | 60 | 0.0062 | 0.0014 | 1.2965 | 0.0067 | 1.0867 | 1.2279 | 0.0048 | −0.1811 | −0.0049 | 0.000006 |
| 70 | 0.0088 | 0.0017 | 1.3422 | 0.0097 | 1.0966 | 1.2273 | 0.0069 | −0.1730 | −0.0068 | 0.000012 | |
| 80 | 0.0117 | 0.0039 | 1.2439 | 0.0127 | 1.0838 | 1.1053 | 0.0117 | −0.0345 | −0.0093 | 0.000024 | |
| OF | 60 | 0.0063 | 0.0006 | 1.4470 | 0.0070 | 1.1108 | 1.3543 | 0.0040 | −0.3135 | −0.0046 | 0.000005 |
| 70 | 0.0092 | 0.0006 | 1.5547 | 0.0103 | 1.1321 | 1.3651 | 0.0060 | −0.3037 | −0.0066 | 0.000011 | |
| 80 | 0.0130 | 0.0010 | 1.5660 | 0.0146 | 1.1374 | 1.2689 | 0.0099 | −0.1905 | −0.0094 | 0.000022 | |
| UOF | 60 | 0.0060 | 0.0013 | 1.3043 | 0.0067 | 1.0978 | 1.2093 | 0.0051 | −0.1432 | −0.0048 | 0.000006 |
| 70 | 0.0083 | 0.0022 | 1.2739 | 0.0091 | 1.0912 | 1.1578 | 0.0075 | −0.0932 | −0.0067 | 0.000012 | |
| 80 | 0.0117 | 0.0037 | 1.2549 | 0.0127 | 1.0859 | 1.1153 | 0.0114 | −0.0451 | -0.0094 | 0.000024 | |
| Pre-Treatment | T (°C) | Drying Time (min) | Deff (m2/s) × 10−11 | Ea (kJ/mol) |
|---|---|---|---|---|
| Control | 60 | 345 ± 21.2 g | 6.09 ± 0.21 a | 33.27 ± 1.44 a |
| 70 | 260 ± 14.1 cdef | 7.68 ± 0.37 cd | ||
| 80 | 190 ± 14.1 abc | 12.0 ± 0.24 f | ||
| F | 60 | 355 ± 21.2 g | 4.55 ± 0.23 b | 34.32 ± 3.76 ab |
| 70 | 255 ± 21.2 bcdef | 6.27 ± 0.18 bc | ||
| 80 | 200 ± 14.1 abcd | 8.29 ± 0.31 d | ||
| UF | 60 | 305 ± 21.2 fg | 6.30 ± 0.15 b | 44.37 ± 4.37 ab |
| 70 | 230 ± 14.1 abcde | 11.1 ± 0.55 ef | ||
| 80 | 175 ± 7.1 a | 15.2 ± 0.48 g | ||
| OF | 60 | 335 ± 21.2 g | 7.23 ± 0.28 bcd | 36.34 ± 0.30 b |
| 70 | 245 ± 21.2 abcdef | 10.9 ± 0.40 ef | ||
| 80 | 195 ± 7.1 abcd | 15.6 ± 0.77 g | ||
| UOF | 60 | 295 ± 21.2 efg | 6.12 ± 0.19 b | 33.11 ± 0.28 a |
| 70 | 240 ± 14.1 abcdef | 10.4 ± 0.40 e | ||
| 80 | 185 ± 7.1 ab | 12.0 ± 0.26 f |
| Pre-Treatment | T (°C) | TPC (mg GAE/100 g dw) | AA (%) | Vitamin C (mg/100 g dw) |
|---|---|---|---|---|
| Control | 60 | 122.48 ± 2.95 a | 36.00 ± 0.39 a | 4.51 ± 0.14 a |
| 70 | 97.98 ± 7.28 d | 19.07 ± 1.02 e | 4.12 ± 0.02 b | |
| 80 | 81.71 ± 3.66 f | 20.96 ± 2.05 d | 0.66 ± 0.01 i | |
| F | 60 | 119.99 ± 6.96 ab | 30.86 ± 1.77 b | 4.08 ± 0.02 c |
| 70 | 104.45 ± 6.09 c | 28.49 ± 1.34 c | 3.92 ± 0.30 d | |
| 80 | 71.06 ± 0.67 h | 14.84 ± 1.30 g | 0.24 ± 0.01 k | |
| UF | 60 | 85.48 ± 4.63 e | 17.46 ± 0.62 ef | 4.06 ± 0.08 c |
| 70 | 74.59 ± 1.98 g | 12.33 ± 1.17 h | 3.40 ± 0.03 e | |
| 80 | 70.32 ± 6.81 h | 12.21 ± 2.12 h | 0.13 ± 0.01 l | |
| OF | 60 | 88.21 ± 4.06 e | 21.23 ± 1.41 d | 3.88 ± 0.02 d |
| 70 | 67.19 ± 8.62 i | 17.59 ± 1.45 ef | 2.39 ± 0.06 g | |
| 80 | 72.58 ± 9.66 gh | 14.35 ± 1.36 gh | 0.81 ± 0.07 h | |
| UOF | 60 | 73.31 ± 6.00 gh | 21.56 ± 1.49 d | 3.21 ± 0.04 f |
| 70 | 61.42 ± 6.78 j | 15.83 ± 2.85 fg | 2.39 ± 0.06 g | |
| 80 | 54.29 ± 9.29 k | 15.39 ± 0.51 g | 0.48 ± 0.19 j |
| Pre-Treatment | T (°C) | L* | a* | b* | ΔE | BI |
|---|---|---|---|---|---|---|
| Control | 60 | 72.18 ± 1.28 bc | 9.09 ± 0.34 f | 22.51 ± 0.86 gh | 15.06 ± 2.05 e | 40.10 ± 8.23 c |
| 70 | 62.02 ± 0.69 h | 10.80 ± 0.84 i | 20.68 ± 0.83 ef | 21.69 ± 0.83 g | 55.49 ± 1.42 g | |
| 80 | 55.35 ± 0.61 j | 13.47 ± 0.66 j | 22.61 ± 0.86 h | 31.06 ± 1.22 j | 69.56 ± 1.07 j | |
| F | 60 | 74.63 ± 0.64 ab | 5.65 ± 0.16 b | 18.87 ± 0.33 c | 13.01 ± 0.69 c | 34.37 ± 0.61 b |
| 70 | 71.88 ± 0.70 c | 7.06 ± 0.35 d | 19.49 ± 0.44 d | 13.91 ± 0.84 d | 38.85 ± 0.92 c | |
| 80 | 64.53 ± 1.09 fg | 9.73 ± 0.42 g | 20.59 ± 0.58 e | 20.27 ± 1.74 f | 49.31 ± 1.26 e | |
| UF | 60 | 69.83 ± 0.75 d | 9.09 ± 0.31 f | 22.93 ± 0.81 i | 16.37 ± 0.60 e | 49.27 ± 1.02 e |
| 70 | 60.02 ± 0.54 i | 9.50 ± 0.29 fg | 21.79 ± 0.29 g | 22.41 ± 0.84 h | 56.76 ± 1.05 h | |
| 80 | 62.87 ± 0.70 gh | 9.63 ± 0.23 g | 21.54 ± 0.26 fg | 20.32 ± 0.69 f | 52.95 ± 0.77 f | |
| OF | 60 | 77.86 ± 0.72 a | 5.21 ± 0.13 a | 17.68 ± 0.45 a | 9.93 ± 0.81 ab | 30.27 ± 0.75 a |
| 70 | 75.79 ± 0.46 ab | 5.92 ± 0.26 c | 19.70 ± 0.42 d | 9.96 ± 0.77 b | 35.35 ± 0.93 bc | |
| 80 | 65.96 ± 0.61 ef | 7.03 ± 0.25 d | 19.24 ± 0.22 cd | 16.81 ± 0.98 e | 41.87 ± 0.90 d | |
| UOF | 60 | 75.11 ± 0.43 ab | 6.01 ± 0.13 c | 17.82 ± 0.12 ab | 9.92 ± 0.40 a | 32.81 ± 0.16 ab |
| 70 | 67.43 ± 0.64 de | 8.26 ± 0.20 e | 19.89 ± 0.22 d | 13.93 ± 0.81 d | 43.93 ± 0.81 d | |
| 80 | 67.02 ± 0.54 e | 8.70 ± 0.28 e | 19.75 ± 0.18 d | 16.40 ± 0.57 e | 44.43 ± 0.81 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yılmaz, B.A.; Kavak, D.D.; Demir, H. Combined Effects of Taro Starch-Based Edible Coating, Osmotic Dehydration, and Ultrasonication on Drying Kinetics and Quality Attributes of Pears. Processes 2025, 13, 3695. https://doi.org/10.3390/pr13113695
Yılmaz BA, Kavak DD, Demir H. Combined Effects of Taro Starch-Based Edible Coating, Osmotic Dehydration, and Ultrasonication on Drying Kinetics and Quality Attributes of Pears. Processes. 2025; 13(11):3695. https://doi.org/10.3390/pr13113695
Chicago/Turabian StyleYılmaz, Betül Aslan, Dilek Demirbüker Kavak, and Hande Demir. 2025. "Combined Effects of Taro Starch-Based Edible Coating, Osmotic Dehydration, and Ultrasonication on Drying Kinetics and Quality Attributes of Pears" Processes 13, no. 11: 3695. https://doi.org/10.3390/pr13113695
APA StyleYılmaz, B. A., Kavak, D. D., & Demir, H. (2025). Combined Effects of Taro Starch-Based Edible Coating, Osmotic Dehydration, and Ultrasonication on Drying Kinetics and Quality Attributes of Pears. Processes, 13(11), 3695. https://doi.org/10.3390/pr13113695

