The Investigation of Methane Pyrolysis and Its Carbon Products Utilizing Molten Metal/Molten Salt Composite Reactors
Abstract
1. Introduction
2. Experiment
2.1. Description of the Bubble Reactor
2.2. Recovery and Processing of Solid Carbon Product
2.3. Characterization of the Carbon Product
3. Results and Discussion
3.1. Reactor Performance
3.2. Carbon Analysis
3.2.1. The Content of Carbon Product Elements
3.2.2. SEM Analysis
3.2.3. XRD and Raman Spectroscopy
3.3. The Impurity Removal Mechanism in a Two-Phase Reactor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Midilli, A.; Ay, M.; Dincer, I.; Rosen, M. On hydrogen and hydrogen energy strategies I: Current status and needs. Renew. Sustain. Energy Rev. 2005, 9, 255–271. [Google Scholar] [CrossRef]
- Midilli, A.; Ay, M.; Dincer, I.; Rosen, M. On hydrogen and hydrogen energy strategies II: Future projections affecting global stability and unrest. Renew. Sustain. Energy Rev. 2005, 9, 273–287. [Google Scholar] [CrossRef]
- Muradov, N.Z.; Veziroglu, T.N. ”Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839. [Google Scholar] [CrossRef]
- Muradov, N. Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. Int. J. Hydrogen Energy 2017, 42, 14058–14088. [Google Scholar] [CrossRef]
- Chen, C.-J.; Back, M.H.; Back, R.A. The thermal decomposition of methane. II. Secondary reactions, autocatalysis and carbon formation; non-Arrhenius behaviour in the reaction of CH3 with ethane. Can. J. Chem. 1976, 54, 3175–3184. [Google Scholar] [CrossRef]
- Muradov, N.; Smith, F.; Huang, C.; T-Raissi, A. Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions. Catal. Today 2006, 116, 281–288. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Wan Daud, W.A.; Abbas, H.F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane-A review. Renew. Sustain. Energy Rev. 2015, 44, 221–256. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z.; Jia, Q.; Takriff, M.S. Catalytic decomposition of undiluted methane into hydrogen and carbon nanotubes over Pt promoted Ni/CeO2 catalysts. New J. Chem. 2018, 42, 14843–14856. [Google Scholar] [CrossRef]
- Kopp, M.; Coleman, D.; Stiller, C.; Scheffer, K.; Aichinger, J.; Scheppat, B. Energiepark Mainz: Technical and economic analysis of the worldwide largest Power-to-Gas plant with PEM electrolysis. Int. J. Hydrogen Energy 2017, 42, 13311–13320. [Google Scholar] [CrossRef]
- Kutteri, D.A.; Wang, I.-W.; Samanta, A.; Li, L.; Hu, J. Methane decomposition to tip and base grown carbon nanotubes and COx free H2 over mono- and bimetallic 3d transition metal catalysts. Catal. Sci. Technol. 2018, 8, 858–869. [Google Scholar] [CrossRef]
- Dunker, A.; Kumar, S.; Mulawa, P. Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor-Effects of catalyst, temperature, and residence time. Int. J. Hydrogen Energy 2006, 31, 473–484. [Google Scholar] [CrossRef]
- Patel, S.; Kundu, S.; Halder, P.; Marzbali, M.H.; Chiang, K.; Surapaneni, A.; Shah, K. Production of hydrogen by catalytic methane decomposition using biochar and activated char produced from biosolids pyrolysis. Int. J. Hydrogen Energy 2020, 45, 29978–29992. [Google Scholar] [CrossRef]
- Abbas, H.F.; Daud, W.W. Influence of reactor material and activated carbon on the thermocatalytic decomposition of methane for hydrogen production. Appl. Catal. A Gen. 2010, 388, 232–239. [Google Scholar] [CrossRef]
- Botas, J.; Serrano, D.; Guil-López, R.; Pizarro, P.; Gómez, G. Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production. Int. J. Hydrogen Energy 2010, 35, 9788–9794. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, H.; Li, W.; Li, B. Hydrogen production by methane decomposition over coal char. Int. J. Hydrogen Energy 2006, 31, 899–905. [Google Scholar] [CrossRef]
- Abánades, A.; Rubbia, C.; Salmieri, D. Thermal cracking of methane into Hydrogen for a CO2-free utilization of natural gas. Int. J. Hydrogen Energy 2013, 38, 8491–8496. [Google Scholar] [CrossRef]
- Abánades, A.; Rubbia, C.; Salmieri, D. Technological challenges for industrial development of hydrogen production based on methane cracking. Energy 2012, 46, 359–363. [Google Scholar] [CrossRef]
- Steinberg, M. Fossil fuel decarbonization technology for mitigating global warming. Int. J. Hydrogen Energy 1999, 24, 771–777. [Google Scholar] [CrossRef]
- Geißler, T.; Plevan, M.; Abánades, A.; Heinzel, A.; Mehravaran, K.; Rathnam, R.; Rubbia, C.; Salmieri, D.; Stoppel, L.; Stückrad, S.; et al. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Int. J. Hydrogen Energy 2015, 40, 14134–14146. [Google Scholar] [CrossRef]
- Upham, D.C.; Agarwal, V.; Khechfe, A.; Snodgrass, Z.R.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 2017, 358, 917–920. [Google Scholar] [CrossRef]
- Rahimi, N.; Kang, D.; Gelinas, J.; Menon, A.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts. Carbon 2019, 151, 181–191. [Google Scholar] [CrossRef]
- Song, D.-Y.; Maruoka, N.; Maeyama, T.; Shibata, H.; Kitamura, S.-Y. Influence of Bottom Bubbling Condition on Metal Emulsion Formation in Lead-Salt System. ISIJ Int. 2010, 50, 1539–1545. [Google Scholar] [CrossRef]
- Journée, D. Helium Bubbling in a Molten Salt Fast Reactor. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2014; pp. 7–12. [Google Scholar]
- Lofstrom, G. Solid Salt Fluxing of Molten Aluminum. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2013. [Google Scholar]
- Natsui, S.; Takai, H.; Kumagai, T.; Kikuchi, T.; Suzuki, R.O. Multiphase Particle Simulation of Gas Bubble Passing Through Liquid/Liquid Interfaces. Mater. Trans. 2014, 55, 1707–1715. [Google Scholar] [CrossRef]
- Baumli, P.; Kaptay, G. Wettability of carbon surfaces by pure molten alkali chlorides and their penetration into a porous graphite substrate. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2008, 495, 192–196. [Google Scholar] [CrossRef]
- Parkinson, B.; Patzschke, C.F.; Nikolis, D.; Raman, S.; Dankworth, D.C.; Hellgardt, K. Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties. Int. J. Hydrogen Energy 2021, 46, 6225–6238. [Google Scholar] [CrossRef]
- Catalan, L.J.; Rezaei, E. Modelling the hydrodynamics and kinetics of methane decomposition in catalytic liquid metal bubble reactors for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 7547–7568. [Google Scholar] [CrossRef]
- Kang, D.; Rahimi, N.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Catalytic methane pyrolysis in molten MnCl2-KCl. Appl. Catal. B Environ. 2019, 254, 659–666. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]










| Sample | C (wt%) | Cu (wt%) | Bi (wt%) | Na (wt%) | Cl (wt%) |
|---|---|---|---|---|---|
| Cu0.45Bi0.55–NaCl (200–200) | 42.53 | 0.03 | 2.21 | 17.82 | 37.41 |
| Cu0.45Bi0.55–NaCl (200–200) water washed | 92.27 | 0.64 | 2.32 | 1.63 | 3.14 |
| Cu0.45Bi0.55–NaCl (200–200) water washed + acid washed | 93.03 | 0.15 | 1.14 | 1.45 | 4.23 |
| Cu0.45Bi0.55–NaCl (200–200) water washed + vacuum heated | 95.54 | 0.34 | 1.05 | 1.04 | 2.03 |
| Cu0.45Bi0.55-NaCl (200–100) | 57.31 | 0.24 | 3.54 | 13.75 | 25.16 |
| Cu0.45Bi0.55–NaCl (200–100) water washed | 91.36 | 0.42 | 4.40 | 1.15 | 2.67 |
| Cu0.45Bi0.55–NaCl (200–100) water washed + acid washed | 93.89 | 0.20 | 2.04 | 1.52 | 2.35 |
| Cu0.45Bi0.55–NaCl (200–100) water washed + vacuum heated | 98.03 | 0.13 | 1.06 | 0.33 | 0.45 |
| Cu0.45Bi0.55 (400) | 47.60 | 2.14 | 50.26 | N.A. | N.A. |
| Cu0.45Bi0.55 (400) water washed + acid washed | 95.34 | 1.23 | 3.43 | N.A. | N.A. |
| Cu0.45Bi0.55 (400) water washed + vacuum heated | 97.23 | 1.05 | 1.72 | N.A. | N.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Liao, J.; Luo, X.; Ouyang, X.; Wei, J.; Gou, F. The Investigation of Methane Pyrolysis and Its Carbon Products Utilizing Molten Metal/Molten Salt Composite Reactors. Processes 2025, 13, 3549. https://doi.org/10.3390/pr13113549
Su X, Liao J, Luo X, Ouyang X, Wei J, Gou F. The Investigation of Methane Pyrolysis and Its Carbon Products Utilizing Molten Metal/Molten Salt Composite Reactors. Processes. 2025; 13(11):3549. https://doi.org/10.3390/pr13113549
Chicago/Turabian StyleSu, Xichen, Jiashu Liao, Xiangyang Luo, Xuncheng Ouyang, Jianjun Wei, and Fujun Gou. 2025. "The Investigation of Methane Pyrolysis and Its Carbon Products Utilizing Molten Metal/Molten Salt Composite Reactors" Processes 13, no. 11: 3549. https://doi.org/10.3390/pr13113549
APA StyleSu, X., Liao, J., Luo, X., Ouyang, X., Wei, J., & Gou, F. (2025). The Investigation of Methane Pyrolysis and Its Carbon Products Utilizing Molten Metal/Molten Salt Composite Reactors. Processes, 13(11), 3549. https://doi.org/10.3390/pr13113549

