Bi(C6N7O3) Nanospheres: A Novel Homogenous Photocatalyst for Efficient Treatment of Antibiotic in Water
Abstract
1. Introduction
2. Experimental
2.1. Chemicals and Materials
2.2. Preparation
2.3. Characterization
2.4. Photocatalytic Degradation Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thakur, S.; Mutreja, V.; Tomar, A.; Nainwal, S.; Kaur, K.; Kaur, R.; Li, Q.; Ataya, F.S. Phytochemical-Assisted Fabrication of ZrO2/ZnO Nanocomposites: A Sustainable Approach for Efficient Photodegradation of Tetracycline Hydrochloride. J. Mol. Struct. 2025, 1330, 141350. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, Z.; Yang, Q.; Dong, X.; Zhang, J.; Qin, L. In-Situ Construction of All-Solid-State Z-Scheme g-C3N4/TiO2 Nanotube Arrays Photocatalyst with Enhanced Visible-Light-Induced Properties. Sol. Energy Mater. Sol. Cells 2016, 157, 399–405. [Google Scholar] [CrossRef]
- Senthil, R.A.; Theerthagiri, J.; Selvi, A.; Madhavan, J. Synthesis and Characterization of Low-Cost g-C3N4/TiO2 Composite with Enhanced Photocatalytic Performance under Visible-Light Irradiation. Opt. Mater. 2017, 64, 533–539. [Google Scholar] [CrossRef]
- Mohini, R.; Lakshminarasimhan, N. Coupled Semiconductor Nanocomposite g-C3N4/TiO2 with Enhanced Visible Light Photocatalytic Activity. Mater. Res. Bull. 2016, 76, 370–375. [Google Scholar] [CrossRef]
- Sun, M.; Shen, S.; Wu, Z.; Tang, Z.; Shen, J.; Yang, J. Rice Spike-like g-C3N4/TiO2 Heterojunctions with Tight-Binding Interface by Using Sodium Titanate Ultralong Nanotube as Precursor and Template. Ceram. Int. 2018, 44, 8125–8132. [Google Scholar] [CrossRef]
- Liu, R.; Bie, Y.; Qiao, Y.; Liu, T.; Song, Y. Design of g-C3N4/TiO2 Nanotubes Heterojunction for Enhanced Organic Pollutants Degradation in Waste Water. Mater. Lett. 2019, 251, 126–130. [Google Scholar] [CrossRef]
- Liu, C.; Tan, L.; Zhang, L.; Tian, W.; Ma, L. A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Front. Environ. Sci. 2021, 9, 692298. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Huang, H. Layered Photocatalytic Nanomaterials for Environmental Applications. Chin. Chem. Lett. 2023, 34, 107523. [Google Scholar] [CrossRef]
- Qian, X.; Chen, Z.; Yang, X.; Zhao, W.; Liu, C.; Sun, T.; Zhou, D.; Yang, Q.; Wei, G.; Fan, M. Perovskite Cesium Lead Bromide Quantum Dots: A New Efficient Photocatalyst for Degrading Antibiotic Residues in Organic System. J. Clean. Prod. 2020, 249, 119335. [Google Scholar] [CrossRef]
- Ma, Z.; He, Y.; Li, X.; Zhou, C.; Deng, L. Ultrasonic-Assisted Efficient Degradation of Tetracycline over ZnO/BiOBr Heterojunctions: Synergistic Effect and Role of Oxidative Species. Mater. Res. Bull. 2022, 146, 111591. [Google Scholar] [CrossRef]
- Guo, S.; Luo, H.; Li, Y.; Chen, J.; Mou, B.; Shi, X.; Sun, G. Structure-Controlled Three-Dimensional BiOI/MoS2 Microspheres for Boosting Visible-Light Photocatalytic Degradation of Tetracycline. J. Alloys Compd. 2021, 852, 157026. [Google Scholar] [CrossRef]
- Kandi, D.; Behera, A.; Sahoo, S.; Parida, K. CdS QDs Modified BiOI/Bi2MoO6 Nanocomposite for Degradation of Quinolone and Tetracycline Types of Antibiotics towards Environmental Remediation. Sep. Purif. Technol. 2020, 253, 117523. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Z.; Liu, C.; Wang, D.; Yan, G.; Liu, B.; Che, G. Enhanced Visible-Light-Induced Photocatalytic Degradation of Tetracycline Using BiOI/MIL-125(Ti) Composite Photocatalyst. J. Alloys Compd. 2021, 854, 157166. [Google Scholar] [CrossRef]
- Li, X.; Masters, A.; Maschmeyer, T. Polymeric Carbon Nitride for Solar Hydrogen Production. Chem. Commun. 2017, 53, 7438–7446. [Google Scholar] [CrossRef]
- Wang, D.; Huang, Y.; Yu, X.; Huang, X.; Zhong, Y.; Huang, X.; Liu, Z.; Feng, Q. Template-Free Synthesis of High Specific Surface Area Gauze-like Porous Graphitic Carbon Nitride for Efficient Photocatalytic Degradation of Tetracycline Hydrochloride. J. Mater. Sci. 2020, 56, 4641–4653. [Google Scholar] [CrossRef]
- Fang, L.J.; Li, Y.H.; Liu, P.F.; Wang, D.P.; Zeng, H.D.; Wang, X.L.; Yang, H.G. Facile Fabrication of Large-Aspect-Ratio g-C3N4 Nanosheets for Enhanced Photocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2017, 5, 2039–2043. [Google Scholar] [CrossRef]
- Huang, C.; Wen, J.; Shen, Y.; He, F.; Mi, L.; Gan, Z.; Ma, J.; Liu, S.; Ma, H.; Zhang, Y. Dissolution and Homogeneous Photocatalysis of Polymeric Carbon Nitride. Chem. Sci. 2018, 9, 7912–7915. [Google Scholar] [CrossRef] [PubMed]
- Horvath-Bordon, E.; Kroke, E.; Svoboda, I.; Fuess, H.; Riedel, R.; Neeraj, S.; Cheetham, A.K. Alkalicyamelurates, M3[C6N7O3].xH2O, M = Li, Na, K, Rb, Cs: UV-Luminescent and Thermally Very Stable Ionic Tri-s-Triazine Derivatives. Dalton Trans. 2004, 22, 3900–3908. [Google Scholar] [CrossRef]
- Wang, Z.; Pei, G.X.; Qi, H.; Zhang, S.; Liu, C.; Li, Z.; Han, K. Solar Hydrogen Generation over Carbon Nitride Photocatalyst Promoted by Water-Soluble Carbon Dots. ChemPhotoChem 2022, 6, e202200176. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Z.; Yang, X.; Audebert, P.; Sahoo, S.; Chen, J.; Liu, Y.; Pamir Alpay, S.; Xie, L.; Wei, G. Potassium Cyamelurate K3[C6N7O3] Rod: A New Visible-Light Photocatalyst for Homogeneous/Heterogeneous Degradation of Antibiotics. Appl. Catal. A Gen. 2022, 641, 118669. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Q.; Zhang, M.; Nie, Y.; Tian, X.; Yang, C.; Li, Y. pH-Dependent Oxidation Mechanisms over FeCu Doped g-C3N4 for Ofloxacin Degradation via the Efficient Peroxymonosulfate Activation. J. Clean. Prod. 2021, 315, 128207. [Google Scholar] [CrossRef]
- Bao, J.; Jiang, X.; Huang, L.; Quan, W.; Zhang, C.; Wang, Y.; Wang, H.; Zeng, Y.; Zhang, W.; Ma, Y.; et al. Molybdenum disulfide loading on a Z-scheme graphitic carbon nitride and lanthanum nickelate heterojunction for enhanced photocatalysis: Interfacial charge transfer and mechanistic insights. J. Colloid Interface Sci. 2022, 611, 684–694. [Google Scholar] [CrossRef]
- Preeyanghaa, M.; Erakulan, E.S.; Thapa, R.; Ashokkumar, M.; Neppolian, B. Scrutinizing the Role of Tunable Carbon Vacancies in g-C3N4 Nanosheets for Efficient Sonophotocatalytic Degradation of Tetracycline in Diverse Water Matrices: Experimental Study and Theoretical Calculation. Chem. Eng. J. 2023, 452, 139437. [Google Scholar] [CrossRef]
- Wang, D.; Li, S.; Feng, Q. Supramolecular Self-Assembled Carbon Nitride for the Degradation of Tetracycline Hydrochloride. J. Mater. Sci. Mater. Electron. 2018, 29, 9380–9386. [Google Scholar] [CrossRef]
- Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv. Mater. 2017, 29, 1605148. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; You, J.; Zhang, Q.; Liu, D.; Hu, S.; Gui, J. Preparation of Fe-Doped Graphitic Carbon Nitride with Enhanced Visible-Light Photocatalytic Activity. Editor. Off. Acta Phys.-Chim. Sin. 2014, 30, 1706–1712. [Google Scholar] [CrossRef]
- Zhang, S.; Zou, Y.; Chen, Z.; Li, B.; Gu, P.; Wen, T. Visible-Light-Driven Activation of Persulfate by RGO/g-C3N4 Composites for Degradation of BPA in Wastewater. J. Inorg. Mater. 2020, 35, 329–336. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, D.; Wang, Z.; Yi, L.; Sun, J.; Liu, D.; Yu, X.; Chen, Y. Bandgap Engineering of Carbon Nitride by Formic Acid Assisted Thermal Treatment for Photocatalytic Degradation of Tetracycline Hydrochloride. Chem. Eng. J. 2024, 485, 149830. [Google Scholar] [CrossRef]
- Jourshabani, M.; Shariatinia, Z.; Badiei, A. Controllable Synthesis of Mesoporous Sulfur-Doped Carbon Nitride Materials for Enhanced Visible Light Photocatalytic Degradation. Langmuir 2017, 33, 7062–7078. [Google Scholar] [CrossRef]
- Zhang, A.; Guo, Y.; Xie, H.; Zhang, Y.; Fu, Y.; Ye, C.; Du, Y.; Zhu, M. Green and Controllable Synthesis of Kelp-like Carbon Nitride Nanosheets via an Ultrasound-Mediated Self-Assembly Strategy. J. Colloid Interface Sci. 2022, 628, 397–408. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, Y.; Liang, H.; Zhang, M.; Sun, X.; Bai, J. Augmented Singlet Oxygen (1O2) Production via ZnO2/Bi2O2CO3 Heterojunction for Photodegradation of Tetracycline Hydrochloride through in-Situ Self-Fenton-like Mechanisms. Rare Met. 2025. [Google Scholar] [CrossRef]
- Ramteke, P.; Bhoyar, T.; Umare, S.S. Sulfamic Acid Coupled Polymeric Carbon Nitride: An Efficient Photocatalyst for Degradation of Tetracycline Hydrochloride and Supercapacitor Application. J. Nanoparticle Res. 2025, 27, 159. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Lee, T.; Nguyen, T.D. Synergistic Charge Separation via S-Scheme and Schottky Junctions in Ni-Decorated Melem Hydrate/g-C3N5 for Enhanced Photocatalytic Tetracycline Hydrochloride Degradation. J. Mater. Sci. 2025, 60, 19675–19694. [Google Scholar] [CrossRef]
- Li, F.; Cheng, Y.; Li, P.; Yu, G. Study on the Performance of BiOCl Photocatalyst for Degradation of Tetracycline Hydrochloride. Separations 2025, 12, 242. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Wang, J.; Li, M.; Zhang, H.; Yang, J.; Wei, L. Synthesis and Application of Transition Metal Ions Co-Doped CdS Photocatalyst for Tetracycline Hydrochloride Degradation. Res. Chem. Intermed. 2025, 51, 5315–5388. [Google Scholar] [CrossRef]
- Cao, H.; Shi, X.; Wang, Y. Construction of a Z-Scheme CoFe2O4/Bi4O7 Heterojunction for Enhanced Photocatalytic Degradation of Tetracycline Hydrochloride. Mater. Lett. 2025, 398, 138974. [Google Scholar] [CrossRef]
- Feng, F.; Zhang, X.; Xu, X.; Huang, Q.; Yin, H.; Li, R.; Wu, G.; Xing, W. Construction of 2D/3D Biochar Modified g-C3N4 for Efficient Removal of Tetracycline Hydrochloride via Photocatalytic PMS Activation. Opt. Mater. 2025, 167, 117246. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, X.; Yang, X.; Liu, C.; Qian, X.; Sun, T.; Chang, W.; Zhang, J.; Chen, Z. Synthesis of Novel 1T/2H-MoS2 from MoO3 Nanowires with Enhanced Photocatalytic Performance. Nanomaterials 2020, 10, 1124. [Google Scholar] [CrossRef]
- Rosa, D.; Remmani, R.; Bavasso, I.; Bracciale, M.P.; Di Palma, L. Biochar Supported Fe–TiO2 Composite for Wastewater Treatment: Solid-State Synthesis and Mechanistic Insights. Chem. Eng. Sci. 2025, 317, 122076. [Google Scholar] [CrossRef]
- Wang, D.; Yin, F.-X.; Cheng, B.; Xia, Y.; Yu, J.-G.; Ho, W.-K. Enhanced Photocatalytic Activity and Mechanism of CeO2 Hollow Spheres for Tetracycline Degradation. Rare Met. 2021, 40, 2369–2380. [Google Scholar] [CrossRef]
- Liang, H.; Wang, A.; Cheng, R.; Chen, F.; Kannan, P.; Molochas, C.; Tsiakaras, P. Bi, K Co-Doped Graphitic Phase Carbon Nitride for Efficient Photocatalytic H2O2 Production. Chem. Eng. J. 2024, 489, 151145. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, R.; Tang, M.; Hou, M.; Xing, H.; Cai, Y.; Wu, J.; Wang, X.; Chen, J.; Li, L.; Jin, C.; et al. Bi(C6N7O3) Nanospheres: A Novel Homogenous Photocatalyst for Efficient Treatment of Antibiotic in Water. Processes 2025, 13, 3535. https://doi.org/10.3390/pr13113535
Jia R, Tang M, Hou M, Xing H, Cai Y, Wu J, Wang X, Chen J, Li L, Jin C, et al. Bi(C6N7O3) Nanospheres: A Novel Homogenous Photocatalyst for Efficient Treatment of Antibiotic in Water. Processes. 2025; 13(11):3535. https://doi.org/10.3390/pr13113535
Chicago/Turabian StyleJia, Rongrong, Mingchuan Tang, Mengshan Hou, Haiheng Xing, Yuxing Cai, Jianhao Wu, Xiaozhuo Wang, Jinchao Chen, Lan Li, Chengchao Jin, and et al. 2025. "Bi(C6N7O3) Nanospheres: A Novel Homogenous Photocatalyst for Efficient Treatment of Antibiotic in Water" Processes 13, no. 11: 3535. https://doi.org/10.3390/pr13113535
APA StyleJia, R., Tang, M., Hou, M., Xing, H., Cai, Y., Wu, J., Wang, X., Chen, J., Li, L., Jin, C., Chen, Z., & Wang, X. (2025). Bi(C6N7O3) Nanospheres: A Novel Homogenous Photocatalyst for Efficient Treatment of Antibiotic in Water. Processes, 13(11), 3535. https://doi.org/10.3390/pr13113535

