Performance Analysis of Natural Gas Centrifugal Compressors Under Hydrogen-Blended Conditions
Abstract
1. Introduction
2. Methods
2.1. Model Establishment
2.2. Governing Equations and Turbulence Models
2.3. Boundary Condition Settings
2.4. Model Validation
3. Results and Discussion
3.1. Research on Operating Characteristics of Centrifugal Compressors Under Pure Natural Gas Conditions
3.2. Research on the Operational Characteristics of Centrifugal Compressors Under Hydrogen-Blended Conditions
3.2.1. Impact of Hydrogen Blending on Compressor Pressure Ratio
3.2.2. Impact of Hydrogen Blending on Compressor Outlet Temperature
3.2.3. The Impact of Hydrogen Blending on Pressure Ratio and Outlet Temperature


3.2.4. The Impact of Hydrogen Blending on Compressor Power and Polytropic Efficiency
3.3. Analysis of the Impact of Different Hydrogen Blending Ratios on Compressor Stability Operating Range
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patonia, A. Green hydrogen and its unspoken challenges for energy justice. Appl. Energy 2024, 377, 124674. [Google Scholar] [CrossRef]
- Pal, D.B.; Singh, A.; Bhatnagar, A. A review on biomass based hydrogen production technologies. Int. J. Hydrogen Energy 2022, 47, 1461–1480. [Google Scholar] [CrossRef]
- Almaraz, S.D.; Kocsis, T.; Azzaro-Pantel, C.; Szántó, O.O. Identifying social aspects related to the hydrogen economy: Review, synthesis, and research perspectives. Int. J. Hydrogen Energy 2024, 49, 601–618. [Google Scholar] [CrossRef]
- Mahajan, D.; Tan, K.; Venkatesh, T.; Kileti, P.; Clayton, C.R. Hydrogen Blending in Gas Pipeline Networks-A Review. Energies 2022, 15, 3582. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, W.H.; Wang, W.Z.; Li, X.R.; Zhou, H.Q. Large scale of green hydrogen storage: Opportunities and challenges. Int. J. Hydrogen Energy 2024, 50, 379–396. [Google Scholar] [CrossRef]
- Dong, H.X.; Li, C.J.; Nian, L.; Zhang, W.Z.; Hu, M.Y.; Xu, C.B. A comprehensive review on renewable power-to-green hydrogen-to-power systems: Green hydrogen production, transportation, storage, re-electrification and safety. Appl. Energy 2025, 390, 125821. [Google Scholar] [CrossRef]
- Barbosa, L.T.; Vasconcelos, S.D.; Rosas, P.A.C.; Castro, J.F.C.; Barbosa, D.C.P. Assessment of Green Hydrogen as Energy Supply Alternative for Isolated Power Systems and Microgrids. Energies 2024, 17, 4774. [Google Scholar] [CrossRef]
- Deymi-Dashtebayaz, M.; Ebrahimi-Moghadam, A.; Pishbin, S.I.; Pourramezan, M. Investigating the effect of hydrogen injection on natural gas thermo-physical properties with various compositions. Energy 2019, 167, 235–245. [Google Scholar] [CrossRef]
- Arpino, F.; Canale, C.; Cortellessa, G.; Dell’Isola, M.; Ficco, G.; Grossi, G.; Moretti, L. Green hydrogen for energy storage and natural gas system decarbonization: An Italian case study. Int. J. Hydrogen Energy 2024, 49, 586–600. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, H.F.; Yang, M.; Jia, W.L.; Qiu, Y.Z.; Lan, L. From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: Mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels. Int. J. Hydrogen Energy 2022, 47, 8071–8090. [Google Scholar] [CrossRef]
- Gutiérrez-Guerra, R.; Rosales, M.; Murrieta-Dueñas, R.; Cortez-González, J. Development and implementation of an APP to simulate centrifugal compressors. Educ. Chem. Eng. 2025, 52, 51–68. [Google Scholar] [CrossRef]
- Tabkhi, F.; Azzaro-Pantel, C.; Pibouleau, L.; Domenech, S. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection. Int. J. Hydrogen Energy 2008, 33, 6222–6231. [Google Scholar] [CrossRef]
- Xue, W.D.; Wang, Y.; Liang, Y.J.; Wang, T.F.; Ren, B.W. Efficient hydraulic and thermal simulation model of the multi-phase natural gas production system with variable speed compressors. Appl. Therm. Eng. 2024, 242, 122411. [Google Scholar] [CrossRef]
- Peng, Q.Q.; Bao, R.X.; Li, J.; Ren, J.M.; Tang, J.Q.; Li, J.L.; Pan, Z.; Ma, G.Y.; Gao, Y.P.; Kang, T.G.; et al. Centrifugal compressor performance prediction and dynamic simulation of natural gas hydrogen blended. Int. J. Hydrogen Energy 2024, 52, 872–893. [Google Scholar] [CrossRef]
- Wang, L.Y.; Wang, P.; Cao, Z.Z.; Yu, B.; Li, W. Similarity Conversion of Centrifugal Natural Gas Compressors Based on Predictor-Corrector. In Proceedings of the International Conference on Computational Science (ICCS), Zurich, Switzerland, 12–14 June 2017; pp. 1973–1981. [Google Scholar]
- Wang, P.; Yang, F.; Sun, D.; Wang, L.; Zuo, D. Performance conversion of centrifugal compressors based on predictor corrector method. Chin. Sci. Bull. 2018, 63, 571–578. [Google Scholar] [CrossRef]
- Dong, J.Y.; Song, B.; Yuan, X.Y.; Jin, W.C.; Wang, J. Research on aerodynamic performance of centrifugal compressors for hydrogen-mixed natural gas. PLoS ONE 2024, 19, e0312829. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liang, Y.J.; Li, J.F. CFD analysis of leakage and diffusion characteristics in the buried hydrogen-blended natural gas pipeline. Int. J. Hydrogen Energy 2024, 60, 354–368. [Google Scholar] [CrossRef]
- Sundström, E.; Semlitsch, B.; Mihaescu, M. Generation Mechanisms of Rotating Stall and Surge in Centrifugal Compressors. Flow Turbul. Combust. 2018, 100, 705–719. [Google Scholar] [CrossRef]
- Gu, L.L.; Zemp, A.; Abhari, R.S. Numerical study of the heat transfer effect on a centrifugal compressor performance. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2015, 229, 2207–2220. [Google Scholar] [CrossRef]
- Xiong, Z.Y.; Liu, Y.H.; Cai, Y.J.; Chang, W.C.; Wang, Z.Q.; Li, Z.L.; Peng, S.Y. Research on the effect of green hydrogen blending on natural gas centrifugal compressor performance. Renew. Energy 2025, 242, 122378. [Google Scholar] [CrossRef]
- Khan, A.; Irfan, M.; Niazi, U.M.; Shah, I.M.; Legutko, S.; Rahman, S.; Alwadie, A.S.; Jalalah, M.; Glowacz, A.; Khan, M.K.A. Centrifugal Compressor Stall Control by the Application of Engineered Surface Roughness on Diffuser Shroud Using Numerical Simulations. Materials 2021, 14, 2033. [Google Scholar] [CrossRef]
- Ferrario, F.; Busini, V.J.R.i.E. Statistical analysis of modelling approaches for CFD simulations of high-pressure natural gas releases. Results Eng. 2024, 21, 101770. [Google Scholar] [CrossRef]
- Li, Z.L.; Lu, X.G.; Wu, Y.F.; Han, G. Quantitative investigation of the turbulence model effect on high-pressure-ratio centrifugal compressor performance prediction. Int. Commun. Heat Mass Transf. 2023, 142, 106644. [Google Scholar] [CrossRef]
- Gibson, L.; Galloway, L.; Kim, S.I.; Spence, S. Assessment of turbulence model predictions for a centrifugal compressor simulation. J. Glob. Power Propuls. Soc. 2017, 1, 142–156. [Google Scholar] [CrossRef]
- Li, J.C.; Fan, Y.; Pang, D.; Wu, T.; Zhang, Y.; Zhou, K. Investigation on the Compressibility Factor of Hydrogen-Doped Natural Gas Using GERG-2008 Equation of State. Energies 2025, 18, 53. [Google Scholar] [CrossRef]
- Mathias, P.M.; Parekh, V.S.; Millers, E.J. Prediction and correlation of the thermal conductivity of pure fluids and mixtures, including the critical region. Ind. Eng. Chem. Res. 2002, 41, 989–999. [Google Scholar] [CrossRef]
- Sundstrom, E.; Semlitsch, B.; Mihaescu, M. Assessment of the 3D Flow in a Centrifugal Compressor Using Steady-State and Unsteady Flow Solvers. 2014. Available online: https://www.sae.org/papers/assessment-3d-flow-a-centrifugal-compressor-using-steady-state-unsteady-flow-solvers-2014-01-2856 (accessed on 20 December 2024).












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Chen, F.; Wang, Y.; Liu, F.; Zhao, Z.; Wang, S. Performance Analysis of Natural Gas Centrifugal Compressors Under Hydrogen-Blended Conditions. Processes 2025, 13, 3536. https://doi.org/10.3390/pr13113536
Xiao L, Chen F, Wang Y, Liu F, Zhao Z, Wang S. Performance Analysis of Natural Gas Centrifugal Compressors Under Hydrogen-Blended Conditions. Processes. 2025; 13(11):3536. https://doi.org/10.3390/pr13113536
Chicago/Turabian StyleXiao, Li, Feng Chen, Yaqun Wang, Fang Liu, Zehui Zhao, and Shaowei Wang. 2025. "Performance Analysis of Natural Gas Centrifugal Compressors Under Hydrogen-Blended Conditions" Processes 13, no. 11: 3536. https://doi.org/10.3390/pr13113536
APA StyleXiao, L., Chen, F., Wang, Y., Liu, F., Zhao, Z., & Wang, S. (2025). Performance Analysis of Natural Gas Centrifugal Compressors Under Hydrogen-Blended Conditions. Processes, 13(11), 3536. https://doi.org/10.3390/pr13113536
