Fractal Analysis of Microstructural Effects on Gas-Water Relative Permeability in Fractured Reservoirs
Abstract
1. Introduction
2. Materials and Methods
2.1. Fractal Theory for Porosity Matrix
2.2. Fractal Theory for Fracture Network
3. A Fractal-Theory-Based Gas-Water Phase Permeability Model for Dual-Porosity Media
3.1. Gas-Water Phase Permeability Model of Rock Matrix
3.2. Gas-Water Phase Permeability Model of Fracture Network
4. Results and Discussion
4.1. Model Verification
4.2. Influence of Fracture Network Structural Parameters
4.3. Influence of Rock Matrix Structural Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| θ | Fracture plane dip concerning flow direction in the front plane |
| e | Fracture aperture |
| E | Young’s modulus |
| w | Fracture width |
| υ | Poisson’s ratio |
| N | The cumulative number of fractures or porosity matrix |
| Δp | The differential pressure |
| ϕm | Rock matrix porosity |
| ϕf | Fracture network porosity |
| rmin | Minimum porosity matrix radius |
| rmax | Maximum porosity matrix radius |
| rfmin | Minimum fracture radius |
| rfmax | Maximum fracture radius |
| rf0min | Minimum closure fracture radius |
| rf0max | Maximum closure fracture radius |
| σeff | Effective stress on fracture surface |
| L0 | Length of the model |
| Ltf | The tortuous length of fracture |
| Lt | The tortuous length of a capillary |
| DT | Fractal dimension for tortuosity of matrix radius |
| DP | Fractal dimension for the distribution of matrix radius |
| Dx | Fractal dimension for tortuosity of fracture radius after σeff is applied |
| Df | Fractal dimension for the distribution of fracture radius after σeff is applied |
| Df,i | The phase fractal dimension of fracture radius distribution |
| DP,i | The phase fractal dimension of matrix radius distribution |
| Kf | The permeability of fracture network |
| Kt | The equivalent permeability of dual-porosity media |
| Kt,w | Dual medium water phase effective permeability |
| Kt,g | Dual medium gas phase effective permeability |
| Krw | Water phase relative permeability of dual medium |
| Krg | Gas phase relative permeability of dual medium |
| dE | Euclidean dimension |
References
- Xiang, Z.; Zhen, R.; Xu, Y.; Wang, S.; Ao, X.; Chen, Z.; Hu, J. A numerical pressure transient model of fractured well with complex fractures of tight gas reservoirs considering gas-water two phase by EDFM. Geoenergy Sci. Eng. 2023, 231, 212286. [Google Scholar] [CrossRef]
- Lv, M.; Xue, B.; Guo, W.; Li, J.; Guan, B. Novel calculation method to predict gas-water two-phase production for the fractured tight-gas horizontal well. J. Pet. Explor. Prod. Technol. 2024, 14, 255–269. [Google Scholar] [CrossRef]
- Tan, M.; Su, M.; Liu, W.; Song, X.; Wang, S. Digital core construction of fractured carbonate rocks and pore-scale analysis of acoustic properties. J. Pet. Sci. Eng. 2021, 196, 107771. [Google Scholar] [CrossRef]
- Yu, B.; Li, J.; Li, Z.; Zou, M. Permeabilities of unsaturated fractal porous media. Int. J. Multiph. Flow 2003, 29, 1625–1642. [Google Scholar] [CrossRef]
- Song, W.; Yao, J.; Li, Y.; Sun, H.; Wang, D.; Yan, X. Gas-Water Relative Permeabilities Fractal Model in Dual-Wettability Multiscale Shale Porous Media During Injected Water Spontaneous Imbibition and Flow Back Process. Fractals 2020, 28, 2050103. [Google Scholar] [CrossRef]
- Eparu, C.N.; Prundurel, A.P.; Doukeh, R.; Stoica, D.B.; Ghețiu, I.V.; Suditu, S.; Stan, I.G.; Rădulescu, R. Optimizing Underground Natural Gas Storage Capacity through Numerical Modeling and Strategic Well Placement. Processes 2024, 12, 2136. [Google Scholar] [CrossRef]
- Matthäi, S.K.; Mezentsev, A.; Belayneh, M. Finite Element-Node-Centered Finite-Volume Two-Phase-Flow Experiments with Fractured Rock Represented by Unstructured Hybrid-Element Meshes. SPE Reserv. Eval. Eng. 2007, 10, 740–756. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.; Meng, Q.; Wang, Y.; Cai, J. Fractal Models for Gas-Water Transport in Shale Porous Media Considering Wetting Characteristics. Fractals 2020, 28, 2050138. [Google Scholar] [CrossRef]
- Lu, C.; Qin, X.; Yu, L.; Geng, L.; Mao, W.; Bian, H.; Meng, F. The Characteristics of Gas-Water Two-Phase Radial Flow in Clay-Silt Sediment and Effects on Hydrate Production. Geofluids 2021, 2021, 6623802. [Google Scholar] [CrossRef]
- Zeng, Y.; Bian, X.; Wang, L.; Zhang, L. Coupling model of gas-water two-phase productivity calculation for fractured horizontal wells in tight gas reservoirs. Geoenergy Sci. Eng. 2024, 234, 212666. [Google Scholar] [CrossRef]
- Yang, M.; Mousavi, S.M.; Fatehi, H.; Bai, X.-S. Numerical simulation of biomass gasification in fluidized bed gasifiers. Fuel 2023, 337, 127104. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, B.; Ye, K.; Li, H.; Tan, Y. Spontaneous imbibition model for micro-nano-scale pores in shale gas reservoirs considering gas-water interaction. J. Pet. Sci. Eng. 2022, 209, 109893. [Google Scholar] [CrossRef]
- Cai, M.; Elsworth, D.; Su, Y.; Lu, M. A New Fractal Temporal Conductivity Model for Propped Fracture and Its Application in Tight Reservoirs. Fractals 2020, 28, 2050074. [Google Scholar] [CrossRef]
- Lei, G.; Qu, J.; Wu, Q.; Pang, J.; Su, D.; Guan, J.; Lu, C. Theoretical analysis of threshold pressure in tight porous media under stress. Phys. Fluids 2023, 35, 73313. [Google Scholar] [CrossRef]
- Luo, X.; Cheng, Y.; Tan, C. Calculation method of equivalent permeability of dual-porosity media considering fractal characteristics and fracture stress sensitivity. J. Pet. Explor. Prod. Technol. 2023, 13, 1691–1701. [Google Scholar] [CrossRef]
- Wang, L.; Yang, S.; Peng, X.; Deng, H.; Meng, Z.; Qian, K.; Wang, Z.; Lei, H. An improved visual investigation on gas-water flow characteristics and trapped gas formation mechanism of fracture-cavity carbonate gas reservoir. J. Nat. Gas. Sci. Eng. 2018, 49, 213–226. [Google Scholar] [CrossRef]
- Li, C.; Xia, Z.; Wang, P. Seepage characteristics of tight sandstone gas reservoir in main gas production stage. Spec. Oil Gas. Reserv. 2016, 23, 94–96. [Google Scholar] [CrossRef]
- Ali, A.A.; Abdul-Majeed, G.H.; Al-Sarkhi, A. Review of Multiphase Flow Models in the Petroleum Engineering: Classifications, Simulator Types, and Applications. Arab. J. Sci. Eng. 2025, 50, 4413–4456. [Google Scholar] [CrossRef]
- Ren, X.; Li, A.; Memon, A. Experimental Study on Gas-Water Relative Permeability Characteristics of Tight Sandstone Reservoir in Ordos Basin. Geofluids 2022, 2022, 1521837. [Google Scholar] [CrossRef]
- Shen, J.; Qin, Y.; Li, Y.; Wang, G. Experimental investigation into the relative permeability of gas and water in low-rank coal. J. Pet. Sci. Eng. 2019, 175, 303–316. [Google Scholar] [CrossRef]
- Miao, T.; Chen, A.; Xu, Y.; Cheng, S.; Wang, K. A Permeability Model for Water-gas Phase Flow in Fractal Fracture Networks. Fractals 2018, 26, 1850087. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, J.J. Multi-scaled pore network modeling of gas-water flow in shale formations. J. Pet. Sci. Eng. 2019, 177, 899–908. [Google Scholar] [CrossRef]
- Guo, C.; Sun, J.; Liu, H. Transport Model for Gas and Water in Nanopores of Shale Gas Reservoirs. J. Energy Eng. 2021, 147, 4021022. [Google Scholar] [CrossRef]
- Xia, B.; Luo, Y.; Pan, C.; Gong, T.; Hu, H.; Ji, K. Coalbed methane flow characteristics based on fractal geometry and stochastic rough fracture network. Energy Sources Part. A-Recovery Util. Environ. Eff. 2021, 47, 3877–3895. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, F.; Dai, Z.; Wang, J.; Chen, L.; Ling, H.; Soltanian, R. Radionuclide Transport in Multi-scale Fractured Rocks: A Review. J. Hazard. Mater. 2021, 424, 127550. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Wang, H.; Yang, Y.; Li, Z.; Jiang, B.; Li, J.; Xiang, Z. Triple-Porosity and Dual-Permeability Productivity Prediction Model of CBM Wells Considering Complex Flow Regimes. Front. Earth Sci. 2022, 10, 906276. [Google Scholar] [CrossRef]
- Zhao, M.; Kong, D.; Teng, S.; Shi, J. Combined effects of the roughness, aperture, and fractal features on the equivalent permeability and nonlinear flow behavior of rock fracture networks. Phys. Fluids 2024, 36, 74110. [Google Scholar] [CrossRef]
- Xue, K.; Zhang, Z.; Han, X.; Guang, W. A fractal model for estimating the permeability of tortuous fracture networks with correlated fracture length and aperture. Phys. Fluids 2023, 35, 43615. [Google Scholar] [CrossRef]
- Shi, D.; Li, L.; Guo, Y.; Liu, J.; Tang, J.; Chang, X.; Song, R.; Wu, M. Estimation of rough fracture network permeability using fractal and topology theories. Gas. Sci. Eng. 2023, 116, 205043. [Google Scholar] [CrossRef]
- Kong, D.; Zhao, M.; Teng, S.; Shi, J. Stress-Dependent Fractal Model for Predicting the Relative Permeability of Rocks Based on Equivalent Capillaries. Ind. Eng. Chem. Res. 2023, 62, 22071–22080. [Google Scholar] [CrossRef]
- Ferreira, C.A.S.; Nick, H.M. On the influence of matrix flow in the hydraulic permeability of rough-walled fractures. J. Hydrol. 2024, 645, 132192. [Google Scholar] [CrossRef]
- Meng, S.; Zeng, Y.; Wu, Q. Unraveling the mechanisms of dual-permeability flow in weakly cemented sandstones: An in-depth exploration of matrix-fracture interactions. J. Hydrol. 2025, 661, 133731. [Google Scholar] [CrossRef]
- Dai, P. Experiment and Numerical Simulation of Low Permeability Stress Sensitive Reservoir. Southwest Petroleum University: Chengdu, MA, China, 2006.
- Feng, Y.; Liu, Y.; Lei, G. Study on Stress-Dependent Permeability of Fracture Networks in Fractured Porous Media. Geofluids 2021, 2021, 7433547. [Google Scholar] [CrossRef]
- Chen, Z.; Ewing, R. Mathematical Analysis for Reservoir Models. SIAM J. Math. Anal. 1999, 30, 431–453. [Google Scholar] [CrossRef]
- Liu, R.; Li, B.; Jiang, Y.; Jing, H.; Yu, L. Relationship between equivalent permeability and fractal dimension of dual-porosity media subjected to fluid-rock reaction under triaxial stresses. Fractals 2018, 26, 1850072. [Google Scholar] [CrossRef]
- You, X.; Liu, J.; Jia, C.; Li, J.; Liao, X.; Zheng, A. Production data analysis of shale gas using fractal model and fuzzy theory: Evaluating fracturing heterogeneity. Appl. Energy 2019, 250, 1246–1259. [Google Scholar] [CrossRef]
- Hu, B.; Wang, J.; Ma, Z. A Fractal Discrete Fracture Network Based Model for Gas Production from Fractured Shale Reservoirs. Energies 2020, 13, 1857. [Google Scholar] [CrossRef]
- Liang, X.; Hou, P.; Xue, Y.I.; Yang, X.; Gao, F.; Liu, J. A Fractal Perspective on Fracture Initiation and Propagation of Reservoir Rocks Under Water and Nitrogen Fracturing. Fractals 2021, 29, 2150189. [Google Scholar] [CrossRef]
- Chen, H.; Feng, S. Evaluation and Application of Fractal-Based Hydraulic Constitutive Model for Unsaturated Flow in Heterogeneous Soils. Comput. Geotech. 2023, 159, 105497. [Google Scholar] [CrossRef]
- Jafari, A. Permeability Estimation of Fracture Networks. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2011. [Google Scholar] [CrossRef]
- Xu, P.; Li, C.; Qiu, S.; Sasmito, A.P. A Fractal Network Model for Fractured Porous Media. Fractals 2016, 24, 1650018. [Google Scholar] [CrossRef]
- Hu, B.; Wang, J.G.; Wu, D.I.; Wang, H. Impacts of Zone Fractal Properties on Shale Gas Productivity of a Multiple Fractured Horizontal Well. Fractals 2018, 27, 1950006. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, Y.; Li, L.; Wang, X.; Qin, C.; Liu, L.; Liu, C.; Wu, D. Image-based pore-network modeling of two-phase flow in hydrate-bearing porous media. Energy 2022, 252, 124044. [Google Scholar] [CrossRef]
- Gu, K.; Ning, Z. Fractal dimension changes of shale pore structure and influence on mechanical properties, relative permeability under different hydration degree. Environ. Earth Sci. 2023, 82, 189. [Google Scholar] [CrossRef]
- Gere, J.M.; Goodno, B.J. Mechanics of Materials; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]





| Parameter | Initial Value | Range | Units | Parameter Description |
|---|---|---|---|---|
| DT | 1.6 | 1.0~1.7 | dimensionless | Fractal dimension for tortuosity of matrix aperture |
| Dp | 1.9 | 1.1~2.4 | dimensionless | Fractal dimension for the distribution of matrix aperture |
| Dx | 2.4 | 2.0~2.8 | dimensionless | Fractal dimension for tortuosity of fracture aperture |
| Df | 2.6 | 2.0~2.8 | dimensionless | Fractal dimension for the distribution of fracture aperture |
| 11.0 | 10~25 | % | Rock matrix porosity | |
| 1.3 | 1.0~2.0 | % | Fracture network porosity | |
| L0 | 150 | - | μm | Length of the model |
| rmax | 10 | - | μm | Maximum porosity matrix radius |
| rf0max | 20 | - | μm | Maximum fracture radius |
| rmin | 0.1 | - | μm | Minimum porosity matrix radius |
| rf0min | 1 | - | μm | Minimum fracture radius |
| w | 60 | - | μm | fracture aperture |
| σeff | 30 | - | MPa | Effective stress on the fracture surface |
| υ | 0.25 | 0.20~0.55 | dimensionless | Poisson’s ratio of fracture network |
| E | 5.0 | 1~35 | GPa | Young modulus of fracture network |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, L.; Yang, Y.; Luo, X.; Sai, Y.; Cheng, Y. Fractal Analysis of Microstructural Effects on Gas-Water Relative Permeability in Fractured Reservoirs. Processes 2025, 13, 3435. https://doi.org/10.3390/pr13113435
Qiu L, Yang Y, Luo X, Sai Y, Cheng Y. Fractal Analysis of Microstructural Effects on Gas-Water Relative Permeability in Fractured Reservoirs. Processes. 2025; 13(11):3435. https://doi.org/10.3390/pr13113435
Chicago/Turabian StyleQiu, Linhao, Yuxi Yang, Xiang Luo, Yunxiu Sai, and Youyou Cheng. 2025. "Fractal Analysis of Microstructural Effects on Gas-Water Relative Permeability in Fractured Reservoirs" Processes 13, no. 11: 3435. https://doi.org/10.3390/pr13113435
APA StyleQiu, L., Yang, Y., Luo, X., Sai, Y., & Cheng, Y. (2025). Fractal Analysis of Microstructural Effects on Gas-Water Relative Permeability in Fractured Reservoirs. Processes, 13(11), 3435. https://doi.org/10.3390/pr13113435

