A New Predictive Model for Open-Hole Wellbore Stability During the Production Phase of Ultra-Deep Extended-Reach Wells Based on Critical Production Pressure Difference Constraints
Abstract
1. Introduction
2. Rock Mechanics and Immersion Experiments
3. Critical Production Pressure Difference Model
4. Model Validation and Example Analysis
5. Sensitivity Analysis of Critical Production Pressure Difference
5.1. Production Time and the Soaking Time of Formation Water
5.2. Well Inclination Angle
5.3. Cohesion
5.4. Friction Angle
5.5. Poisson’s Ratio
5.6. In Situ Stress Nonuniformity
5.7. Pore Pressure
5.8. Biot Coefficient
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| Symbol | Parameter Name (English) | Unit | First Appearing Equation |
| Volumetric thermal expansion coefficient of the rock matrix | 1/K | Equation (2) | |
| Change value of pore pressure caused by exhaustion | MPa | Equation (5) | |
| Change value of maximum horizontal in-situ stress caused by pore pressure exhaustion | MPa | Equation (5) | |
| Change value of minimum horizontal in-situ stress caused by pore pressure exhaustion | MPa | Equation (5) | |
| Temperature change during the production process | °C | Equation (1) | |
| Circumferential angle around wellbore measured counter-clockwise from the x-axis | deg | Equation (12) | |
| Poisson’s ratio | dimensionless | Equation (2) | |
| Maximum horizontal in-situ stress | MPa | Equation (7) | |
| Minimum horizontal in-situ stress | MPa | Equation (8) | |
| Overburden pressure (Vertical stress) | MPa | Equation (6) | |
| Radial stress caused by temperature change in the wellbore | MPa | Equation (1) | |
| Hoop stress caused by temperature change in the wellbore | MPa | Equation (1) | |
| Axial stress caused by temperature change in the wellbore | MPa | Equation (1) | |
| Radial stress around the wellbore including temperature and exhaustion of pore pressure’s effects | MPa | Equation (12) | |
| Hoop stress around the wellbore including temperature and exhaustion of pore pressure’s effects | MPa | Equation (12) | |
| Axial stress around the wellbore including temperature and exhaustion of pore pressure’s effects | MPa | Equation (12) | |
| Components of shear stress around the wellbore include temperature and exhaustion of pore pressure’s effects | MPa | Equation (12) | |
| Angle between the Z axis and the normal stress | deg | Equation (15) | |
| Factors of coordinate conversion | dimensionless | Equation (14) | |
| Young’s modulus | GPa | Equation (2) | |
| Temperature effect coefficient | MPa/°C | Equation (1) | |
| Transformation matrix component | dimensionless | Equation (10) | |
| Pore pressure | MPa | Equation (7) | |
| Radial distance | m | Equation (1) | |
| Three factors of principal stresses | dimensionless | Equation (18) | |
| Biot’s parameter | dimensionless | Equation (7) | |
| Normal stress on a plane | MPa | Equation (15) | |
| Shear stress on a plane | MPa | Equation (15) | |
| Principal stresses | MPa | Equation (17) |
References
- Zhou, X.H.; Gao, S.L.; Gao, W.Z.; Li, N. Formation and distribution of marine-continental transitional lithologic reservoirsin Pingbei slope belt, Xihu sag, East China Sea Shelf Basin. J. China Pet. Explor. 2019, 24, 153–164. [Google Scholar] [CrossRef]
- Liu, C.X.; Gao, H.Y.; Qin, D.W.; Xia, Y.; Shan, L.J. In-situ stress and rock mechanics analysis in the application ofhydraulic fracturing for horizontal wells in the low-permeability andtight sandstone gas reservoirs of the East China Sea. J. World Pet. Ind. 2024, 31, 78–89. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, C.Y.; Lin, J.L.; Huang, X.; Liu, B.B. Pore structure characteristics and genesis analysis of deep tight sandstone in Xihu Depression, East China Sea Basin. J. Nat. Gas Geosci. 2024, 35, 405–422. [Google Scholar]
- Li, Q.; Qin, B.L.; Wang, J.H.; Xiong, Z.Y.; Ma, H.Y.; Wang, H.M. Practice analysis of open holesuspended sidetracking technology in XX low permeabilitygas field in EastChina Sea. J. Pet. Geol. Eng. 2021, 35, 75–81. [Google Scholar] [CrossRef]
- Lei, L.; Li, Q.; Zhang, H.S.; Huang, Z. Practical Analysis of Horizontal Branch Well Technology in the East China Sea. J. Offshore Oil 2021, 41, 93–98. [Google Scholar] [CrossRef]
- Xie, C.; Lv, Z.; Cheng, B.; Cai, Y.; Liao, Z.; Chen, Z. Porosity evolution and reservoir formation model of the Paleogene Huagang Formation sandstone in the YQ structure of the Xihu Depression, East China Sea Basin. Mineral. Petrol. 2025, 45, 122–139. [Google Scholar] [CrossRef]
- Chen, X.Y.; Yang, J.; Gao, D.L.; Hong, Y.Q.; Zou, Y.Q.; Du, X. Unlocking the deepwater natural gas hydrate’s commercial potential with extended reach wells from shallow water: Review and an innovative method. Renew. Sustain. Energy Rev. 2020, 134, 110388. [Google Scholar] [CrossRef]
- Chen, X.Y.; Du, X.; Yang, J.; Gao, D.L.; Zou, Y.Q.; He, Q.Y. Developing offshore natural gas hydrate from existing oil & gas platform based on a novel multilateral wells system: Depressurization combined with thermal flooding by utilizing geothermal heat from existing oil & gas wellbore. Energy 2022, 258, 124870. [Google Scholar] [CrossRef]
- Aadnoy, B.S. Modeling of the stability of highly inclined boreholes in anisotropic rock formations. SPE Drill. Eng. 1988, 3, 259–268. [Google Scholar] [CrossRef]
- Ong, S.H.; Roegiers, J.C. Influence of anisotropies in borehole stability. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 1069–1075. [Google Scholar] [CrossRef]
- Lee, H.; Ong, S.H.; Azeemuddin, M.; Goodman, H. A wellbore stability model for formations with anisotropic rock strengths. J. Petrol. Sci. Eng. 2012, 96, 109–119. [Google Scholar] [CrossRef]
- He, S.; Wang, W.; Zhou, J.; Huang, Z.; Tang, M. A model for analysis of wellbore stability considering the effects of weak bedding planes. J. Nat. Gas Sci. Eng. 2015, 27, 1050–1062. [Google Scholar] [CrossRef]
- Li, Y.; Weijermars, R. Wellbore stability analysis in transverse isotropic shales with anisotropic failure criteria. J. Petrol. Sci. Eng. 2019, 176, 982–993. [Google Scholar] [CrossRef]
- Li, M.b.; Liu, G.h.; Li, J. Thermal effect on wellbore stability during drilling operation with long horizontal section. J. Nat. Gas Sci. Eng. 2015, 23, 118–126. [Google Scholar] [CrossRef]
- He, S.; Liang, L.X.; Zeng, Y.J.; Ding, Y.; Lin, Y.X.; Liu, X.J. The influence of water-based drilling fluid on mechanical property of shale and the wellbore stability. Petroleum 2016, 2, 61–66. [Google Scholar] [CrossRef]
- Zhou, J.; He, S.M.; Tang, M.; Huang, Z.; Chen, Y.L.; Chi, J.; Zhu, Y.; Yuan, P. Analysis of wellbore stability considering the effects of bedding planes and anisotropic seepage during drilling horizontal wells in the laminated formation. J. Petrol. Sci. Eng. 2018, 170, 507–524. [Google Scholar] [CrossRef]
- Wei, A.C.; Peng, X.S.; Han, C.; Li, Z.J.; Xu, F. Running technology for perforation pipe in the slim hole of the ffrst offshore HPHT horizontal well. J. Oil Drill. Prod. Technol. 2016, 38, 762–765. [Google Scholar] [CrossRef]
- Fu, Y.; Pu, Y. Density of completion fluid for ultra deep wells in long naked eye horizontal sections analysis of the importance of wellbore stability. J. Nat. Gas Technol. Econ. 2024, 18, 15–19. [Google Scholar] [CrossRef]
- Huang, X.S.; Li, Z.P.; Yan, K. Feasibility Evaluation of Open Hole Completion of Loose Sandstone Reservoir: Taking the Second Member of Shahejie Formation in the Second Area of Shengtuo Oilfield as an Example. J. Sci. Technol. Eng. 2023, 23, 2840–2847. [Google Scholar] [CrossRef]
- Sun, J.X.; Ning, F.L.; Lei, H.W.; Gai, X.R.; Sánchez, M.; Lu, J.G.; Li, Y.L.; Liu, L.L.; Liu, C.L.; Wu, N.Y.; et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: A case study. J. Petrol. Sci. Eng. 2018, 170, 345–367. [Google Scholar] [CrossRef]
- Wang, Y.L.; Dusseault, M.B. A coupled conductive–convective thermo-poroelastic solution and implications for wellbore stability. J. Petrol. Sci. Eng. 2003, 38, 187–198. [Google Scholar] [CrossRef]
- Ma, T.S.; Chen, P.; Yang, C.H.; Zhao, J. Wellbore stability analysis and well path optimization based on the breakout width model and Mogi–Coulomb criterion. J. Petrol. Sci. Eng. 2015, 135, 678–701. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Wang, H.N.; Jiang, M.J. Elastoplastic analytical investigation of wellbore stability for drilling in methane hydrate-bearing sediments. J. Nat. Gas Sci. Eng. 2020, 79, 103344. [Google Scholar] [CrossRef]
- Liu, H.B.; Cui, S.A.; Meng, Y.F.; Li, Z.; Yu, X.C.; Sun, H.R.; Zhou, Y.X.; Luo, Y. Rock mechanics and wellbore stability of deep shale during drilling and completion processes. J. Petrol. Sci. Eng. 2021, 205, 108882. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, F.B.; Kang, J.H.; Xia, T.Q. Application of a non-linear viscoelastic-plastic rheological model of soft coal on borehole stability. J. Nat. Gas Sci. Eng. 2016, 36, 1303–1311. [Google Scholar] [CrossRef]
- Yousefian, H.; Soltanian, H.; Marji, M.F.; Abdollahipour, A.; Pourmazaheri, Y. Numerical simulation of a wellbore stability in an Iranian oilfield utilizing core data. J. Petrol. Sci. Eng. 2018, 168, 577–592. [Google Scholar] [CrossRef]
- Rashidi, M.R.A.; Phuat, T.C.; Yakup, M.H. Openhole Completion Integrity Analysis for Life of CO2 Injector Well. In Proceedings of the ARMA/DGS/SEG International Geomechanics Symposium, ARMA, Kuala Lumpur, Malaysia, 18–20 November 2024. ARMA-IGS-2024-0222. [Google Scholar] [CrossRef]
- Chen, X.Y.; Gao, D.L.; Guo, B.; Feng, Y.C. Real-time optimization of drilling parameters based on mechanical specific energy for rotating drilling with positive displacement motor in the hard formation. J. Nat. Gas Sci. Eng. 2016, 35, 686–694. [Google Scholar] [CrossRef]
- Merey, S. Well completion operations in gas hydrate reservoirs. Int. J. Oil Gas Coal Technol. 2019, 20, 373–396. [Google Scholar] [CrossRef]
- Li, W.L.; Gao, D.L.; Yang, J. Study of mud weight window of horizontal wells drilled into offshore natural gas hydrate sediments. J. Nat. Gas Sci. Eng. 2020, 83, 103575. [Google Scholar] [CrossRef]
- Chen, X.Y.; Yang, J.; Gao, D.L.; Feng, Y.C.; Li, Y.J.; Luo, M. The Maximum-Allowable Well Depth While Drilling of Extended-Reach Wells Targeting to Offshore Depleted Reservoirs. Energies 2018, 11, 1072. [Google Scholar] [CrossRef]
- Chen, M.; Jin, Y.; Zhang, G.Q. Petroleum Related Rock Mechanics; Science Press: Beijing, China, 2008. [Google Scholar]
- Chenevert, M.E.; Gatlin, C. Mechanical anisotropies of laminated sedimentary rocks. SPE J. 1965, 5, 67–77. [Google Scholar] [CrossRef]

















| Core No. | Length (mm) | Diameter (mm) | Quality (g) | Density (g/cm3) | Confining Pressure (Mpa) | Compressive Strength (Mpa) | Elastic Modulus (Gpa) | Poisson Ratio | Cohesion (Mpa) | Angle of Internal Friction (°) | Remark |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 46.74 | 25.43 | 57.14 | 2.41 | 0 | 101.9 | 21.3 | 0.329 | 21.02 | 45.15 | unsoaked |
| 2 | 42.94 | 25.43 | 52.35 | 2.40 | 30 | 278.1 | 39.0 | 0.237 | |||
| 3 | 46.76 | 25.42 | 56.87 | 2.40 | 0 | 86.5 | 20.2 | 0.348 | 17.50 | 45.94 | soak for 48 h |
| 4 | 46.77 | 25.44 | 57.37 | 2.41 | 30 | 269.7 | 34.8 | 0.292 | |||
| 5 | 46.78 | 25.41 | 57.67 | 2.43 | 0 | 80.5 | 19.2 | 0.387 | 16.41 | 45.64 | soak for 168 h |
| 6 | 46.68 | 25.45 | 57.32 | 2.42 | 30 | 261.0 | 34.2 | 0.349 |
| Model’s Parameters | Values | Units |
|---|---|---|
| True vertical depth | 3798 | m |
| Overburden pressure | 2.45 | g/cm3 |
| Maximum horizontal stress | 2.2 | g/cm3 |
| Minimum horizontal stress | 2.1 | g/cm3 |
| Pore pressure | 1.05 | g/cm3 |
| The angle between the azimuth of the wellbore and the azimuth of the maximum horizontal stress | 21.02 | deg |
| Wellbore inclination | 89 | deg |
| Wellbore diameter | 212.73 | mm |
| Poisson’s ratio | 0.237 | dimensionless |
| Biot’s parameter | 0.9 | dimensionless |
| Tensile strength | 0.8 | MPa |
| Young’s modulus | 39 | GPa |
| Friction angle | 45.15 | deg |
| Volumetric thermal expansion coefficient of rock matrix | 2.59 × 10−5 | 1/K |
| Wellbore wall temperature | 423 | K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Li, G.; Li, Y.; Cai, B.; Chen, X.; Yang, J.; Chen, T.; Zeng, J. A New Predictive Model for Open-Hole Wellbore Stability During the Production Phase of Ultra-Deep Extended-Reach Wells Based on Critical Production Pressure Difference Constraints. Processes 2025, 13, 3373. https://doi.org/10.3390/pr13103373
Ge J, Li G, Li Y, Cai B, Chen X, Yang J, Chen T, Zeng J. A New Predictive Model for Open-Hole Wellbore Stability During the Production Phase of Ultra-Deep Extended-Reach Wells Based on Critical Production Pressure Difference Constraints. Processes. 2025; 13(10):3373. https://doi.org/10.3390/pr13103373
Chicago/Turabian StyleGe, Junrui, Gengchen Li, Yanfei Li, Bin Cai, Xuyue Chen, Jin Yang, Tianwei Chen, and Jun Zeng. 2025. "A New Predictive Model for Open-Hole Wellbore Stability During the Production Phase of Ultra-Deep Extended-Reach Wells Based on Critical Production Pressure Difference Constraints" Processes 13, no. 10: 3373. https://doi.org/10.3390/pr13103373
APA StyleGe, J., Li, G., Li, Y., Cai, B., Chen, X., Yang, J., Chen, T., & Zeng, J. (2025). A New Predictive Model for Open-Hole Wellbore Stability During the Production Phase of Ultra-Deep Extended-Reach Wells Based on Critical Production Pressure Difference Constraints. Processes, 13(10), 3373. https://doi.org/10.3390/pr13103373
