Shape-Stabilized Stearic Acid/Expanded Graphite/Chitin-Derived Carbon Phase Change Materials for Enhanced Thermal Storage Performance and Photothermal Conversion
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Support (ECNX)
2.3. Synthesis of SSPCM (ECNX/SA)
2.4. Characterizations
3. Results and Discussion
3.1. Thermal Storage Performance
3.2. Characterizations Analysis
3.3. Photothermal Conversion
3.4. Thermal Reliability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, Q.; Wang, M.; Tang, H.; Guo, H.; Bingwa, N.; Li, S.; Li, G.; Li, H. A potential building heating strategy integrating solar radiation absorption and thermal energy storage. Sol. Energy 2025, 299, 113762. [Google Scholar] [CrossRef]
- Cao, Z.; Sun, S.; Ma, G.; Feng, A.; Kang, K.; Sun, G.; Li, J. Phase change materials for efficient thermal energy storage and its potential applications in sustainable facility agriculture: A critical review. Renew. Sustain. Energy Rev. 2026, 225, 116169. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, L.; Luo, W.; Chen, W.; Hu, X. Thermally conductive and shape-stable PEG/Cu@rGO-CMF composite phase change material via 3D porous skeleton for solar-thermal energy storage and electronics cooling. J. Energy Storage 2025, 128, 117242. [Google Scholar] [CrossRef]
- Cheng, C.; Hu, L.; Seidu, R.K.; Xu, J.; Jiang, S.-X. Development of phase change materials directly encapsulated within gold shell microcapsules for flexible intelligent textile with energy storage and photo-thermal conversion ability. Nano Energy 2025, 143, 111295. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, P.; Gupta, B. Preparation and characterization of Beewax/PEG as eutectic organic phase change materials for thermal energy storage. Mater. Lett. 2025, 386, 138218. [Google Scholar] [CrossRef]
- Kazemian, A.; Khatibi, M.; Entezari, S.; Ma, T.; Yang, H. Efficient energy generation and thermal storage in a photovoltaic thermal system partially covered by solar cells and integrated with organic phase change materials. Renew. Sustain. Energy Rev. 2023, 188, 113705. [Google Scholar] [CrossRef]
- Liu, P.; Tan, Z.; Zhang, Z.; Fang, H.; Muléstagno, L.; Limjuco, L.A.; Pandey, A.; Tyagi, V.; Ocon, J.D.; Gu, X. Low-cost and easy large-scale preparation of a novel phase change material of palmitic acid/carbonized peanut straw-carbon nanotubes for thermal energy storage. Therm. Sci. Eng. Prog. 2025, 64, 103775. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Q.; Sun, Z.; Wang, Y.; Liang, T.; Wang, B.; Fan, C.; Liu, C. Porous carbon network-based composite phase change materials with heat storage capacity and thermal management functions. Carbon 2024, 226, 119174. [Google Scholar] [CrossRef]
- Ji, R.; Wei, S.; Xia, Y.; Huang, C.; Huang, Y.; Zhang, H.; Xu, F.; Sun, L.; Lin, X. Enhanced thermal performance of form-stable composite phase-change materials supported by novel porous carbon spheres for thermal energy storage. J. Energy Storage 2020, 27, 101134. [Google Scholar] [CrossRef]
- Luan, Y.; Yang, M.; Ma, Q.; Qi, Y.; Gao, H.; Wu, Z.; Wang, G. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties. J. Mater. Chem. A 2016, 4, 7641–7649. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Ly, T.N.; Tran, N.T.; Tuan, H.N.A.; Hieu, N.H.; Bui, T.H. Glutaric acid/expanded graphite composites as highly efficient shape-stabilized phase change materials at medium-temperature. J. Energy Storage 2023, 63, 107038. [Google Scholar] [CrossRef]
- Li, M.; Chen, M.; Wu, Z.; Liu, J. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. Energy Convers. Manag. 2014, 83, 325–329. [Google Scholar] [CrossRef]
- Hekimoğlu, G.; Sarı, A.; Kar, T.; Keleş, S.; Kaygusuz, K.; Tyagi, V.; Sharma, R.; Al-Ahmed, A.; Al-Sulaiman, F.A.; Saleh, T.A. Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties. J. Energy Storage 2021, 35, 102288. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, G.; Li, Z.; Hu, J.; Zhao, Z.; Yao, J.; Cheng, N.; Zhang, Z. Flexible biomass-based phase change materials: L-N-Ti for environmentally friendly thermal management. Sol. Energ. Mat. Sol. C. 2025, 285, 113552. [Google Scholar] [CrossRef]
- Baniasadi, H.; Fathi, Z.; Abidnejad, R.; Silva, P.E.; Bordoloi, S.; Vapaavuori, J.; Niskanen, J.; Lizundia, E.; Kontturi, E.; Lipponen, J. Biochar-infused cellulose foams with PEG-based phase change materials for enhanced thermal energy storage and photothermal performance. Carbohydr. Polym. 2025, 367, 123999. [Google Scholar] [CrossRef]
- Liao, J.; Hou, B.; Huang, H. Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydr. Polym. 2022, 283, 119177. [Google Scholar] [CrossRef]
- Wang, J.; Guo, W.; Ma, X.; Yan, X.; Yao, H.; Guo, M.; Li, G.; Li, S.; Cui, P.; Yu, M.; et al. Synthesis of shape stabilized phase change material with high thermal conductivity via in situ N-doped carbon derived from chitin. J. Energy Storage 2023, 60, 106634. [Google Scholar] [CrossRef]
- Quan, B.; Shi, Z.; Wen, H.; Hu, X.; Liu, Z.; Zhao, X.; Yan, X.; Wang, W.; Huang, X.; Qu, J.; et al. Flexible OBC/PW/EG phase change composites with high thermal conductivity via phase-change-induced in situ exfoliation. Chem. Eng. J. 2025, 522, 168144. [Google Scholar] [CrossRef]
- Cui, H.; Wang, P.; Yang, H.; Tang, W. Enhancing the heat transfer and photothermal conversion of salt hydrate phase change material for efficient solar energy utilization. J. Energy Storage 2022, 49, 104130. [Google Scholar] [CrossRef]
- Wang, T.; Wei, R.; Wang, X.; Yang, Y.; Wang, Z.; Wang, Z.; He, Z.; Yi, S. Shape-stabilized and flexible phase change materials with enhanced photothermal conversion for efficient thermal energy storage. Compos. Part B Eng. 2025, 302, 112539. [Google Scholar] [CrossRef]
- Wang, C.; Feng, L.; Yang, H.; Xin, G.; Li, W.; Zheng, J.; Tian, W.; Li, X. Graphene oxide stabilized polyethylene glycol for heat storage. Phys. Chem. Chem. Phys. 2012, 14, 13233–13238. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Q.; Luo, H.; Luo, S. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage. Appl. Energy 2020, 260, 114278. [Google Scholar] [CrossRef]
- Bordoloi, U.; Das, D.; Kashyap, D.; Patwa, D.; Bora, P.; Muigai, H.H.; Kalita, P. Synthesis and comparative analysis of biochar based form-stable phase change materials for thermal management of buildings. J. Energy Storage 2022, 55, 105801. [Google Scholar] [CrossRef]
- Li, C.; Xie, B.; Chen, D.; Chen, J.; Li, W.; Chen, Z.; Gibb, S.W.; Long, Y. Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage. Energy 2019, 166, 246–255. [Google Scholar] [CrossRef]
- Chen, X.; Gao, H.; Xing, L.; Dong, W.; Li, A.; Cheng, P.; Liu, P.; Wang, G. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater. 2019, 18, 280–288. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Chen, F.; Cai, Y.; Wu, X.; Ma, Z.; Huang, Y.; Liu, K.; Wu, Q.; Wang, H.; et al. Graphitized and curved carbon nanochambers embedded with highly-dispersed cobalt moieties for oxygen reduction electrocatalysis. J. Alloys Compd. 2022, 910, 164829. [Google Scholar] [CrossRef]
- Xie, B.; Li, C.; Zhang, B.; Yang, L.; Xiao, G.; Chen, J. Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater. Energy Built Environ. 2020, 1, 187–198. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Zhong, C.; Lin, Q. Ultrathin-wall mesoporous surface carbon foam stabilized stearic acid as a desirable phase change material for thermal energy storage. J. Ind. Eng. Chem. 2020, 85, 208–218. [Google Scholar] [CrossRef]
- Hou, Y.; Ma, F.; Fu, Z.; Li, C.; An, Q.; Zhu, C.; Dai, J. Encapsulation of stearic-palmitic acid in alkali-activated coconut shell and corn cob biochar to optimize energy storage. J. Energy Storage 2023, 66, 107418. [Google Scholar] [CrossRef]
- Moulakhnif, K.; El Majd, A.; Ghazoui, M.; Ousaleh, H.A.; Faik, A.; Sair, S.; El Bouari, A. Eco-friendly porous carbon from Capparis waste: A green biomass-derived material for high performance thermal energy storage. Environ. Res. 2025, 285, 122599. [Google Scholar] [CrossRef]
- Fan, H.; Zhou, S.; Li, Q.; Gao, G.; Wang, Y.; He, F.; Hu, G.; Hu, X. Hydrogen-bonded frameworks crystals-assisted synthesis of flower-like carbon materials with penetrable meso/macropores from heavy fraction of bio-oil for Zn-ion hybrid supercapacitors. J. Colloid Interface Sci. 2021, 600, 681–690. [Google Scholar] [CrossRef]
- Ding, J.; Wu, X.; Shen, X.; Cui, S.; Chen, X. A promising form-stable phase change material composed of C/SiO2 aerogel and palmitic acid with large latent heat as short-term thermal insulation. Energy 2020, 210, 118478. [Google Scholar] [CrossRef]
- Liu, K.; Yuan, Z.; Zhao, H.; Shi, C.; Zhao, F. Properties and applications of shape-stabilized phase change energy storage materials based on porous material support—A review. Mater. Today Sustain. 2023, 21, 100336. [Google Scholar] [CrossRef]
- Cheng, Q.; Huang, M.; Xiao, A.; Xu, Z.; Chen, X.; Gao, Y.; Yu, G. Recyclable nitrogen-containing chitin-derived carbon microsphere as sorbent for neonicotinoid residues adsorption and analysis. Carbohydr. Polym. 2021, 260, 117770. [Google Scholar] [CrossRef] [PubMed]
- Wen, R.; Liu, Y.; Yang, C.; Zhu, X.; Huang, Z.; Zhang, X.; Gao, W. Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings. J. Energy Storage 2021, 36, 102420. [Google Scholar] [CrossRef]
- Wei, H.; Xie, X.; Li, X.; Lin, X. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material. Appl. Energy 2016, 178, 616–623. [Google Scholar] [CrossRef]
- Wang, K.; Yan, T.; Zhao, Y.; Li, G.; Pan, W. Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage. Energy 2022, 242, 122972. [Google Scholar] [CrossRef]
- Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review. Appl. Energy 2019, 235, 846–873. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, T.; Zhang, J.; Zhang, D.; Guo, P.; Li, H.; Li, C.; Wang, Y. Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties. Renew. Energy 2021, 165, 504–513. [Google Scholar] [CrossRef]
- Zhu, J.; An, Q.; Guo, Q.; Yi, H.; Xia, L.; Song, S. Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management. Appl. Clay Sci. 2022, 223, 106511. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Chang, S.J.; Kim, K.-H.; Kim, S. Tuning surface functionality of standard biochars and the resulting uplift capacity of loading/energy storage for organic phase change materials. Chem. Eng. J. 2020, 394, 125049. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Xi, S.; Xie, H.; Yu, W. 3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage. Renew. Energy 2021, 175, 307–317. [Google Scholar] [CrossRef]
- Luo, X.; Hao, B.; Xiang, H.; Li, H.; Tao, Z. A novel phase change materials used for direct photothermal conversion and efficient thermal storage. Sol. Energy Mater. Sol. Cells 2023, 251, 112142. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, M.; Fu, H. An In-Situ growth Fe3O4 and polyaniline on carbon cloth encapsulated composite phase change materials with high thermal conductivity and photothermal energy conversion and storage. J. Energy Storage 2024, 78, 110090. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Bingwa, N.; Yu, H.; Li, G.; Xiao, Q.; Li, S.; Guo, M.; Ma, X. Comparison of UiO-66(Zr) and its derivate in shape stabilized phase change materials: Thermal storage performance and characterizations. Sol. Energy Mater. Sol. Cells 2024, 277, 113127. [Google Scholar] [CrossRef]
Sample | Tm (°C) | Tf (°C) | ΔT (°C) | ΔHm (J/g) | ΔHf (J/g) |
---|---|---|---|---|---|
SA | 68.53 | 65.01 | 3.52 | 220.83 | 224.00 |
ECN0/SA | 67.89 | 66.64 | 0.89 | 125.55 | 119.33 |
ECN5/SA | 67.27 | 66.64 | 0.63 | 121.45 | 119.59 |
ECN10/SA | 66.71 | 66.14 | 0.57 | 124.41 | 124.14 |
ECN15/SA | 67.68 | 67.06 | 0.62 | 121.59 | 119.80 |
ECN20/SA | 67.63 | 67.16 | 0.47 | 120.30 | 119.95 |
ECN25/SA | 67.79 | 67.33 | 0.46 | 123.76 | 122.55 |
Sample | PCM Mass Fraction (wt.%) | Melting Enthalpy (J/g) | Thermal Conductivity (W/(m·K)) | Ref. |
---|---|---|---|---|
ECN15/SA | 60 | 121.59 | 1.573 | This study |
CSC15/SA | 35 | 76.69 | 0.75 | [27] |
UMSCF16/SA | 75 | 130.9 | 1.725 | [28] |
CC1/SA | 65 | 127.69 | 0.261 | [29] |
CC/CA-PA | 50 | 71.4 | 0.74 | [30] |
Sample | SBET (m2/g) | Vtotal (cm3/g) | Da (nm) |
---|---|---|---|
ECN0 | 406.16 | 0.233 | 2.29 |
ECN5 | 90.86 | 0.083 | 4.62 |
ECN10 | 47.90 | 0.075 | 9.58 |
ECN15 | 21.04 | 0.066 | 37.56 |
ECN20 | 9.41 | 0.044 | 39.03 |
ECN25 | 19.82 | 0.052 | 32.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Wang, J.; Li, G.; Xiao, Q.; Li, H. Shape-Stabilized Stearic Acid/Expanded Graphite/Chitin-Derived Carbon Phase Change Materials for Enhanced Thermal Storage Performance and Photothermal Conversion. Processes 2025, 13, 3335. https://doi.org/10.3390/pr13103335
Guo H, Wang J, Li G, Xiao Q, Li H. Shape-Stabilized Stearic Acid/Expanded Graphite/Chitin-Derived Carbon Phase Change Materials for Enhanced Thermal Storage Performance and Photothermal Conversion. Processes. 2025; 13(10):3335. https://doi.org/10.3390/pr13103335
Chicago/Turabian StyleGuo, Hongli, Junchi Wang, Guoning Li, Qiangqiang Xiao, and Hui Li. 2025. "Shape-Stabilized Stearic Acid/Expanded Graphite/Chitin-Derived Carbon Phase Change Materials for Enhanced Thermal Storage Performance and Photothermal Conversion" Processes 13, no. 10: 3335. https://doi.org/10.3390/pr13103335
APA StyleGuo, H., Wang, J., Li, G., Xiao, Q., & Li, H. (2025). Shape-Stabilized Stearic Acid/Expanded Graphite/Chitin-Derived Carbon Phase Change Materials for Enhanced Thermal Storage Performance and Photothermal Conversion. Processes, 13(10), 3335. https://doi.org/10.3390/pr13103335