Research on the Optimization of the Volume Fracturing Shut-in and Drainage System of Unconventional Reservoirs in the Erlian Block
Abstract
1. Introduction
2. Fracturing Fluid Imbibition–Crude Oil Displacement Experiment
3. Numerical Simulation of a Shut-in Well and Drainage System
3.1. Model Assumption Conditions
3.2. Mathematical Model Establishment
3.2.1. Mathematical Model of Reservoir Dual Media
3.2.2. Auxiliary Equations
3.2.3. Initial Conditions and Boundary Conditions
3.3. Model Solution
3.4. Numerical Model Establishment and Parameter Input
4. Numerical Simulation Results of Flowback in Shut-in Wells
4.1. The Law of Imbibition Displacement of Oil Wells in Unconventional Reservoirs
4.1.1. The Law of Substrate Pressurization in Shut-in Wells
4.1.2. The Law of Oil Change by Fracturing Fluid in Shut-in Wells
4.1.3. The Leading Edge of Fracturing Fluid Infiltration in Shut-in Wells
4.1.4. The Law of Fracturing Fluid Imbibition Equilibrium in Shut-in Wells
4.1.5. The Law of Matrix Oil Leakage in the Flowback Process
4.2. Optimization of Shut-in Time
4.3. Optimization of the System of Backflow of Shut-in Wells
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, T.; Zhang, R.F.; Xiang, X. Favorable accumulation conditions and patterns in trough areaof oil-rich sag in Erlian Basin: Taking the southern sag of Wuliyasitai Sag as an example. Nat. Gas Geosci. 2022, 33, 1409–1420. [Google Scholar]
- Li, X.J.; Zeng, W.; Lu, M.C.; Liao, J.; Yang, Z. Study on the Diagenesis of Glutenite Reservoir in AERSAN Formation in WULIYASITAI Indentation in ERLIAN Basin. Inn. Mong. Petrochem. Ind. 2024, 50, 96–102. [Google Scholar]
- Liao, K.; Zhang, S.C.; Xie, B.B. Simulation of reasonable shut-in time for shale oil after volume fracturing. Pet. Reserv. Eval. Dev. 2024, 14, 749–755. [Google Scholar] [CrossRef]
- Yu, Y.K. Shale gas horizontal well pressure-backflow dynamic adjustment technology. Nat. Gas Geosci. 2022, 42, 192. [Google Scholar]
- Miao, G.J. Study on the Rational Working System of Horizontal Well Flowing in Tight oil. Energy Conserv. Pet. Petrochem. Ind. 2020, 10, 5–7, 19, 60–61. [Google Scholar]
- Weng, D.W.; Jiang, Y.; Yi, X.B.; He, C.M.; Chen, M.G.; Zhu, Y.H. Optimization of Shut-in Time in Shale Gas Wells Based on the Characteristics of Fracturing Flowback. Pet. Drill. Tech. 2023, 51, 49–57. [Google Scholar] [CrossRef]
- Eltahan, E.; Bordeaux Rego, F.; Yu, W.; Sepehrnoori, K. Impact of Well Shut-in After Hydraulic-Fracture Treatments on Productivity and Recovery in Shale Oil Reservoirs. In Proceedings of the SPE Improved Oil Recovery Conference, Virtual, 31 August–4 September 2020; p. D011S003R003. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Zhang, Z.; Xu, J.; Zhou, D.; Su, J.; Tang, Y. Study on the Imbibition Characteristics of Different Types of Pore-Throat Based on Nuclear Magnetic Resonance Technology. Geofluids 2022, 2022, 3503585. [Google Scholar] [CrossRef]
- Li, X.W.; Liu, J.; Guo, G.; Li, K.; Liu, X. Mathematical Model of Imbibition and Its Application in Tight Sandstone Reservoir. Spec. Oil Gas Reserv. 2017, 24, 79–83. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Sun, K.; Zhang, X.Y.; Tang, J.Y.; Zhou, X.F. Experimental on microscopic producing characteristics and enhanced oil recovery of imbibition displacement in shale reservoir. Pet. Geol. Oilfield Dev. Daqing 2025, 44, 156–166. [Google Scholar] [CrossRef]
- Ma, X.F.; Fan, F.L.; Zhang, S.L. Fracture Parameter Optimization of Horizontal Well Fracturing in Low Permeability Gas Reservoir. Nat. Gas Ind. 2005, 25, 61–63. [Google Scholar]
- Zhang, W.J. Optimized Design of Integral Fracturing for Algal Limestone Horizontal Well in Fengxijing Area. Master’s Thesis, China University of Petroleum, Beijing China, 2023. [Google Scholar] [CrossRef]
- Ma, X.F.; Peter, V. The effects of non-Darcy flow on design of hydraulically fractured gas well. Pet. Geol. Recovery Effic. 2010, 17, 83–85, 89, 116–117. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, G.; Liu, J. Modeling Method to Characterize the Pore Structure of Fractured Tight Reservoirs. Appl. Sci. 2022, 12, 2078. [Google Scholar] [CrossRef]
- Luo, E.H.; Hu, Y.L. A study of non-Darcy transient flow in triple porosity media with low permeability reservoir. J. China Univ. Min. Technol. 2013, 42, 100–104. [Google Scholar] [CrossRef]
- Zhu, W.Y.; Liu, Y.F.; Li, Z.X.; Yue, M.; Kong, D.B. Mathematical model of multi-scale flow in tight oil reservoirs and analysis of influential factors. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 2347–2360. [Google Scholar] [CrossRef]
- Su, H.; Lei, Z.D.; Li, J.C.; Gong, B.; Zhao, W.Q.; Ju, B.S.; Zhang, D.Q.; Qin, H. Aneffectivenumericalsimulationmodelofmulti-scalefracturesinreservoir. Acta Pet. Sin. 2019, 40, 587–593+634. [Google Scholar] [CrossRef]
- Wang, F.Y.; Cheng, H. A permeability model of shale complex fracture networks considering slippage effect and tortuosity distribution. J. Cent. South Univ. (Sci. Technol.) 2020, 51, 3454–3464. [Google Scholar] [CrossRef]
- Almulhim, A.; Alharthy, N.; Tutuncu, A.N.; Kazemi, H. Impact of Imbibition Mechanism on Flowback Behavior: A Numerical Study. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 10–13 November 2014; p. D011S002R001. [Google Scholar] [CrossRef]
- Chen, X.; Liao, K.; Lv, Z.; Zhu, J.; Wang, J.; Li, Y.; Wang, F. Numerical Simulation Study on Optimal Shut-In Time in Jimsar Shale Oil Reservoir. Front. Energy Res. 2022, 10, 849064. [Google Scholar] [CrossRef]
- Liang, X.; Liang, T.; Zhou, F.; Wang, C.; Yang, K.; Wei, D.; Luo, Y.; Zhang, D. Impact of Shut-in Time on Production after Hydraulic Fracturing in Fractured Shale Gas Formation: An Experimental Study. J. Nat. Gas Sci. Eng. 2021, 88, 103773. [Google Scholar] [CrossRef]
- Wijaya, N.; Sheng, J.J. Shut-In Effect in Removing Water Blockage in Shale-Oil Reservoirs with Stress-Dependent Permeability Considered. SPE Reserv. Eval. Eng. 2020, 23, 081–094. [Google Scholar] [CrossRef]
- Dontsov, E.V.; Peirce, A.P. Slurry Flow, Gravitational Settling and a Proppant Transport Model for Hydraulic Fractures. J. Fluid Mech. 2014, 760, 567–590. [Google Scholar] [CrossRef]
- Liu, B.; Kumar, D.; Ghassemi, A. Modeling Proppant Transport and Settlement in 3D Fracture Networks in Geothermal Reservoirs. Geothermics 2025, 125, 103176. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, K.J.; Fu, S.S.; Xu, H.L.; Zhang, L.J.; Jiang, H.S. Migration and settlement laws of proppant in multi-scale fractures during the fracturing in the unconventional reservoirs. Nat. Gas Ind. 2024, 44, 109–119. [Google Scholar] [CrossRef]
Core Number | Diameter/mm | Length/mm | Sampling Depth/m | Lithology | Fracturing Fluid Type |
---|---|---|---|---|---|
T21-1 | 24.80 | 49.00 | 1796.46 | Gravel | Active water |
T21-2 | 24.60 | 51.20 | 1789.88 | Gravel | Glue-breaking fracturing fluid |
T21-3 | 24.80 | 51.80 | 1770.62 | Gravel | Glue-breaking fracturing fluid |
Core Number | Diameter /mm | Length /mm | Fluid Viscosity /mPa s | T/°C | Confining Pressure /MPa | Saturated Crude Oil Volume /mL | Imbibition Volume /mL | Imbibition Rate/% |
---|---|---|---|---|---|---|---|---|
T21-1 | 24.80 | 49.00 | 1 | 70 | 20 | 1.494 | 0.296 | 19.8 |
T21-2 | 24.60 | 51.20 | 5 | 70 | 20 | 1.101 | 0.159 | 14.4 |
T21-3 | 24.80 | 51.80 | 5 | 70 | 20 | 2.076 | 0.244 | 11.8 |
Title 1 | Parameter | Numeric Intervals |
---|---|---|
Production grids | Horizontal grid size/m | 10 |
Longitudinal grid size/m | 10 | |
Vertical grid size/m | 10 | |
Fluid PVT | Formation pressure P/MPa | 14.6–18.9 |
Formation temperature T/℃ | 70 | |
Crude oil density ρ/g/cm3 | 0.8381–0.9263 | |
Crude oil viscosity μ/mPa·s | 4.2–9.46 |
Parameter | Numeric Intervals | |
---|---|---|
Geological parameters | Porosity φ/% | 7.9–20.8 |
Permeability K/mD | 0.188–0.499 | |
Engineering parameters | Number of fracturing segments Ns | 8–30 |
Number of clusters in a single segment Nc | 4–6 | |
Cluster spacing Sc/m | 5 | |
Horizontal well parameters | Horizontal well segment length L/m | 360 |
Horizontal well spacing Sh/m | / | |
Crack parameters | Half-length of the crack Lf/m | 140 |
Crack height Hf/m | 35 | |
Fracture conductivity FCD/D·cm | 10 | |
Secondary crack density ρsf/strip/m2 | 0.46 | |
Secondary fracture conductivity fCD/D·cm | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Ma, X.; Xu, L.; Long, C.; Liu, G.; Xiu, S.; Ma, H. Research on the Optimization of the Volume Fracturing Shut-in and Drainage System of Unconventional Reservoirs in the Erlian Block. Processes 2025, 13, 3258. https://doi.org/10.3390/pr13103258
Li N, Ma X, Xu L, Long C, Liu G, Xiu S, Ma H. Research on the Optimization of the Volume Fracturing Shut-in and Drainage System of Unconventional Reservoirs in the Erlian Block. Processes. 2025; 13(10):3258. https://doi.org/10.3390/pr13103258
Chicago/Turabian StyleLi, Ning, Xinfang Ma, Liu Xu, Changjun Long, Guohua Liu, Shuzhi Xiu, and He Ma. 2025. "Research on the Optimization of the Volume Fracturing Shut-in and Drainage System of Unconventional Reservoirs in the Erlian Block" Processes 13, no. 10: 3258. https://doi.org/10.3390/pr13103258
APA StyleLi, N., Ma, X., Xu, L., Long, C., Liu, G., Xiu, S., & Ma, H. (2025). Research on the Optimization of the Volume Fracturing Shut-in and Drainage System of Unconventional Reservoirs in the Erlian Block. Processes, 13(10), 3258. https://doi.org/10.3390/pr13103258