Unravelling the Regulation of Asphaltene Deposition by Dispersants Through Macro-Stability in Micro-Mechanism
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Evaluation of Performance for Asphaltene Dispersants
3.2. Effect of Dispersants on Asphaltene Aggregation
3.3. Analysis of Dispersant Adsorption on Asphaltene
4. Discussion
5. Conclusions
- (1)
- The anionic dispersants DBSA and SDBS exhibit significant differences in regulating the stability of GT-ASP. DBSA can increase OFP of the system from 33.5 vol% to 63.0 vol%, significantly enhancing resistance to n-heptane-induced flocculation. SDBS only increases OFP to 54.6 vol% and even promotes the aggregation of GT-ASP at high concentrations.
- (2)
- Dispersant concentration exerts different effects on the particle size of GT-ASP. DBSA exhibits a saturated adsorption effect on GT-ASP. When the concentration of DBSA reaches 3000 ppm (w/v), the average particle size of GT-ASP decreases from approximately 160 nm (in the absence of dispersant) to less than 30 nm and then remains stable. In contrast, SDBS continuously promotes GT-ASP aggregation as its concentration increases—at an SDBS concentration of 5000 ppm (w/v), the particle size of GT-ASP increases to 1271 nm. For actionable dosage guidance, our data shows that DBSA achieves optimal dispersion at 2000–3000 ppm (w/v): below 2000 ppm, adsorption is incomplete (GT-ASP particle size > 50 nm); above 3000 ppm, no additional size reduction is observed (saturated adsorption), leading to unnecessary dispersant waste.
- (3)
- The key factors leading to the differences in their interaction mechanisms lie in their functional groups and counterions. Mediated by its sulfonic acid group (–SO3H), DBSA achieves efficient dispersion of GT-ASP via the synergistic effect of chemical adsorption and hydrogen bonding. In contrast, SDBS induces GT-ASP aggregation due to the charge neutralization effect of Na+ (its counterion) and the formation of “micellar bridges” via self-aggregation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DBSA | Dodecyl Benzene Sulfonic Acid |
SDBS | Sodium Dodecyl Benzene Sulfonate |
GT-ASP | Gt Asphaltene |
FT-IR | Fourier Transform Infrared Spectroscopy |
XPS | X-Ray Photoelectron Spectroscopy |
OFP | Onset Flocculation Point |
References
- Yu, J.; Quan, H.; Chang, S.; Huang, Z.Y. Research on a fluorine-containing asphaltene dispersant and its application in improving the fluidity of heavy oil. J. Mol. Liq. 2023, 375, 121318. [Google Scholar] [CrossRef]
- AHumoodi, A.; Aziz, B.; Khidhir, D. A Study of Asphaltene Precipitation Problem in some wells in Kurdistan Region. UKH J. Sci. Eng. 2020, 4, 27–36. [Google Scholar] [CrossRef]
- Xiong, R.Y.; Guo, J.X.; Kiyingi, W.; Xu, H.X.; Wu, X.P. The deposition of asphaltenes under high-temperature and highpressure (HTHP) conditions. Pet. Sci. 2023, 20, 611–618. [Google Scholar] [CrossRef]
- Liu, F.H.; Yang, H.; Yang, M.; Wu, J.Z.; Yang, S.Y.; Yu, D.F.; Wu, X.; Wang, J.Y.; Gates, I.; Wang, J.B. Effects of molecular polarity on the adsorption and desorption behavior of asphaltene model compounds on silica surfaces. Fuel 2021, 284, 118990. [Google Scholar] [CrossRef]
- Quan, H.P.; Li, P.F.; Duan, W.M.; Chen, L.; Xing, L.M. A series of methods for investigating the effect of a flow improver on the asphaltene and resin of crude oil. Energy 2019, 187, 115872. [Google Scholar] [CrossRef]
- Yudin, I.K.; Anisimov, M.A. Dynamic light scattering monitoring of asphaltene aggregation in crude oils and hydrocarbon solutions. Asph. Heavy Oils Pet. 2007, 1, 439–468. [Google Scholar]
- Mahmood, M.S.; Al-Lohedan, H.A. Synthesis and characterization of tannic acid esters and their performances as asphaltenes dispersants. J. Pet. Sci. Eng. 2021, 201, 108389. [Google Scholar] [CrossRef]
- Alimohammadi, S.; Zendehboudi, S.; James, L. A comprehensive review of asphaltene deposition in petroleum reservoirs: Theory, challenges, and tips. Fuel 2019, 252, 753–791. [Google Scholar] [CrossRef]
- Lowry, E.; Sedghi, M.; Goual, L. Polymers for asphaltene dispersion: Interaction mechanisms and molecular design considerations. J. Mol. Liq. 2017, 230, 589–599. [Google Scholar] [CrossRef]
- Khormali, A.; Sharifov, A.R.; Torba, D.I. Experimental and modeling analysis of asphaltene precipitation in the near wellbore region of oil wells. Pet. Sci. Technol. 2018, 36, 1030–1036. [Google Scholar]
- Ahmadi, M.; Chen, Z.X. Molecular interactions between asphaltene and surfactants in a hydrocarbon solvent: Application to asphaltene dispersion. Symmetry 2020, 12, 1767. [Google Scholar] [CrossRef]
- Bian, H.; Kan, A.; Yao, Z.L.; Duan, Z.B.; Zhang, H.M.; Zhang, S.G.; Zhu, L.J.; Xia, D.H. Impact of functional group methylation on the disaggregation trend of asphaltene: A combined experimental and theoretical study. J. Phys. Chem. C 2019, 123, 29543–29555. [Google Scholar] [CrossRef]
- Yunus, N.M.M.; Dhevarajan, S.; Wilfred, C.D. Studies on the effect of sulfonate based ionic liquids on asphaltenes. J. Mol. Liq. 2022, 360, 119567. [Google Scholar] [CrossRef]
- Spiecker, P.M.; Gawrys, K.L.; Trail, C.B.; Kilpatrick, P.K. Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation. Colloids Surf. A Physicochem. Eng. Asp. 2003, 220, 9–27. [Google Scholar] [CrossRef]
- Yakubov, M.R.; Abilova, G.R.; Sinyashin, K.O.; Milordov, D.V.; Tazeeva, E.G.; Yakubova, S.G.; Borisov, D.N.; Gryaznov, P.I.; Mironov, N.A.; Borisova, Y.Y. Inhibition of asphaltene precipitation by resins with various contents of vanadyl porphyrins. Energy Fuels 2016, 30, 8997–9002. [Google Scholar] [CrossRef]
- Sedghi, M.; Goual, L. Role of resins on asphaltene stability. Energy Fuels 2010, 24, 2275–2280. [Google Scholar] [CrossRef]
- Marziyeh, S.; Husein, M.; Ghotbi, C.; Dabir, B.; Taghikhani, V. In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions. Fuel 2022, 324, 124525. [Google Scholar] [CrossRef]
- Wattana, P.; Fogler, H.S.; Yen, A.; Carmen Garcìa, M.D.; Carbognani, L. Characterization of polarity-based asphaltene subfractions. Energy Fuels 2005, 19, 101–110. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, T.; Hou, X.D.; Xiao, F. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction. Fuel 2019, 238, 320–330. [Google Scholar] [CrossRef]
- ASTM D6560-12; Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2012.
- Zhang, L.L.; Yang, G.H.; Wang, J.Q.; Li, Y.; Li, L.; Yang, C.H. Study on the polarity, solubility, and stacking characteristics of asphaltenes. Fuel 2014, 128, 366–372. [Google Scholar] [CrossRef]
- Gray, M.; Tykwinski, R.; Stryker, J.; Tan, X. Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy Fuels 2011, 25, 3125–3134. [Google Scholar] [CrossRef]
- Murgich, J. Intermolecular forces in aggregates of asphaltenes and resins. Pet. Sci. Technol. 2002, 20, 983–997. [Google Scholar] [CrossRef]
- Takanohashi, T.; Sato, S.; Tanaka, R. Molecular dynamics simulation of structural relaxation of asphaltene aggregates. Pet. Sci. Technol. 2003, 21, 491–505. [Google Scholar] [CrossRef]
- Rogel, E. Simulation of interactions in asphaltene aggregates. Energy Fuels 2000, 14, 566–574. [Google Scholar] [CrossRef]
- Vargas, F.; Creek, J.; Chapman, W. On the development of an asphaltene deposition simulator. Energy Fuels 2010, 24, 2294–2299. [Google Scholar] [CrossRef]
- Hasanvand, M.; Kharat, R. The thermodynamic modeling of asphaltene precipitation equilibrium during the natural production of crude oil: The role of pressure and temperature. Pet. Sci. Technol. 2014, 32, 1578–1585. [Google Scholar] [CrossRef]
- Karambeigi, M.; Nikazar, M.; Kharrat, R. A novel approach for asphaltene inhibitor modeling. Pet. Sci. Technol. 2016, 34, 274–279. [Google Scholar] [CrossRef]
- Buckley, J. Microscopic investigation of the onset of asphaltene precipitation. Fuel Sci. Technol. Int. 1996, 14, 55–74. [Google Scholar] [CrossRef]
- Hirschberg, A.; Dejong, L.N.J.; Schipper, B.A.; Meijer, J.G. Influence of temperature and pressure on asphaltene flocculation. Soc. Pet. Eng. J. 1984, 24, 283–293. [Google Scholar] [CrossRef]
- Goual, L.; Firoozabadi, A. Effect of resins and DBSA on asphaltene precipitation from petroleum fluids. AIChE J. 2004, 50, 470–479. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Li, M.; Chen, X.; Zhang, L. The effect of free radical initiator in promoting aquathermolysis of heavy oil under mild conditions. Fuel 2024, 375, 132576. [Google Scholar] [CrossRef]
- Quan, H.; Xing, L. The effect of hydrogen bonds between flow improvers with asphaltene for heavy crude oil. Fuel 2019, 237, 276–282. [Google Scholar] [CrossRef]
- Merel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110. [Google Scholar] [CrossRef]
- Grzybek, T.; Pietrzak, R.; Wachowska, H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content. Fuel Process. Technol. 2002, 77, 1–7. [Google Scholar] [CrossRef]
- Nguele, R.; Poupi, A.B.M.; Anombogo, G.A.M.; Alade, O.S.; Saibi, H. Influence of asphaltene structural parameters on solubility. Fuel 2022, 311, 122559. [Google Scholar] [CrossRef]
- Sun, Z.H.; Li, D.; Ma, H.X.; Tian, P.P.; Li, W.H.; Zhu, Y.H. Characterization of asphaltene isolated from low-temperature coal tar. Fuel Process Technol. 2015, 138, 413–418. [Google Scholar] [CrossRef]
- Kelemen, S.; George, G.; Gorbaty, M. Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach. Fuel 1990, 69, 939–944. [Google Scholar] [CrossRef]
- Melendez, A.A.; Garcia, M.; Tavakkoli, M.; Doherty, R.H.; Meng, S.Q.; Abdallah, D.S.; Vargas, F.M. On the evaluation of the performance of asphaltene dispersants. Fuel 2016, 179, 210–220. [Google Scholar] [CrossRef]
- Calemma, V.; Iwanski, P.; Nali, M.; Scotti, R.; Montanari, L. Structural characterization of asphaltenes of different origins. Energy Fuels 1995, 9, 225–230. [Google Scholar] [CrossRef]
- Ghloum, E.; Al-Qahtani, M.; Al-Rashid, A. Effect of inhibitors on asphaltene precipitation for Marrat Kuwaiti reservoirs. J. Pet. Sci. Eng. 2010, 70, 99–106. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, G.; Hu, Q. Experimental study on the change of the onset of asphaltene precipitation during oil production. Pet. Sci. Technol. 2020, 38, 808–813. [Google Scholar] [CrossRef]
Parameters | Connotation | Values |
---|---|---|
H | Hydrogen content (wt%) | 8.49 |
C | Carbon content (wt%) | 85.63 |
N | Nitrogen content (wt%) | 1.86 |
S | Sulfur content (wt%) | 0.79 |
MW | Average molecular weight (g/mol) | 6286 |
CA * | The number of aromatic carbons in a structural unit | 14.71 |
HAU/CA | Condensation degree parameter | 0.52 |
USW | The average molecular weight of the unit structure (g/mol) | 692 |
n | The number of structural units | 9.08 |
fa | Aromatic carbon ratio | 0.47 |
Element Type | Peak | Bonding Energy/ev | Functional Group Type | Relative Content/% | ||
---|---|---|---|---|---|---|
GT-ASP | GT-ASP + DBSA | GT-ASP + SDBS | ||||
C | Peak 1 | 284.5 ± 0.3 | Aromatic carbon (sp2) | 44.93% | 39.02% | 28.92% |
Peak 2 | 285.1 ± 0.3 | Aliphatic carbon (sp3) | 50.23% | 44.03% | 38.91% | |
O | Peak 1 | 532.2 ± 0.3 | C–O–C, C–OH, C–O | 1.51% | 4.96% | 12.83% |
Peak 2 | 533.0 ± 0.3 | COO– | 1.58% | 7.86% | 9.25% | |
Peak 3 | 534.5 ± 0.3 | surface-adsorbed H2O | - | - | 4.06% | |
N | Peak 1 | 398.8 ± 0.3 | Pyridinic nitrogen | 0.39% | 0.15% | 0.09% |
Peak 2 | 400.2 ± 0.3 | Pyrrolic nitrogen | 1.13% | 0.21% | 0.23% | |
Peak 3 | 402.1 ± 0.3 | Quaternary nitrogen | - | 0.56% | 0.07% | |
S | Peak 1 | 163.3 ± 0.3 | Alkyl sulfide | 0.1% | - | - |
Peak 2 | 164.1 ± 0.3 | Thiophenes | 0.09% | - | - | |
Peak 3 | 165.1 ± 0.3 | Sulphoxides | 0.03% | 1.21% | 3.94% | |
Peak 4 | 169.4 ± 0.3 | Sulfonic acid sulfate | 0.01% | 1.99% | 1.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Bai, J.; Wang, H.; Han, X.; Zhang, H.; Cao, Z.; Zhang, L. Unravelling the Regulation of Asphaltene Deposition by Dispersants Through Macro-Stability in Micro-Mechanism. Processes 2025, 13, 3220. https://doi.org/10.3390/pr13103220
Wang Q, Bai J, Wang H, Han X, Zhang H, Cao Z, Zhang L. Unravelling the Regulation of Asphaltene Deposition by Dispersants Through Macro-Stability in Micro-Mechanism. Processes. 2025; 13(10):3220. https://doi.org/10.3390/pr13103220
Chicago/Turabian StyleWang, Qiuxia, Jianhua Bai, Hongyu Wang, Xiaodong Han, Hongwen Zhang, Zijuan Cao, and Longli Zhang. 2025. "Unravelling the Regulation of Asphaltene Deposition by Dispersants Through Macro-Stability in Micro-Mechanism" Processes 13, no. 10: 3220. https://doi.org/10.3390/pr13103220
APA StyleWang, Q., Bai, J., Wang, H., Han, X., Zhang, H., Cao, Z., & Zhang, L. (2025). Unravelling the Regulation of Asphaltene Deposition by Dispersants Through Macro-Stability in Micro-Mechanism. Processes, 13(10), 3220. https://doi.org/10.3390/pr13103220