Research and Application of Conditional Generative Adversarial Network for Predicting Gas Content in Deep Coal Seams
Abstract
1. Introduction
2. Methodology
2.1. Generative Adversarial Networks
- The Discriminator is fixed, and the parameters of the Generator are adjusted to minimize the loss function .
- The Generator is fixed, and the parameters of the Discriminator are adjusted to maximize its ability to distinguish real samples from generated ones, represented by maximizing .
2.2. Conditional Generative Adversarial Networks
- The sensitive factors x input to the generator G and the corresponding generated gas saturation ;
- The sensitive factors x1 from the real data and their corresponding true gas saturation y1;
- The sensitive factors x2 from the real data paired with an incorrect gas saturation (i.e., mismatched samples).
- The final sigmoid activation function in the discriminator—designed for classification—was removed to adapt the model to regression tasks compatible with the Wasserstein metric. Logarithmic operators in the loss functions of both generator and discriminator were also eliminated;
- Gradient penalty techniques [42] were introduced to improve training stability and promote convergence;
- To address instability in the discriminator’s loss gradients, the RMSProp optimizer was adopted in place of Adam. An initial learning rate of 0.002 was used alongside a dynamic exponential decay strategy. The Leaky ReLU activation function [43] was selected for all layers to further enhance gradient flow.
Algorithm 1. CGANs algorithm |
Input: : Sensitivity factors, : Gas saturation Notation: : parameters in generator, : parameters in discriminator, h: batch size, num: number of training sets. : learning rate of network. 1: Prepare training sets: 124 well logs in working area. 2: Initialization: Initialize for Generator and for discriminator. 3: For T = 1:1: epoch do For t = 1:1: num/h do 3.1 Fixing generator and updating discriminator: Sampling n positive examples from database; Sampling n objects from database; Obtaining generated , ; Updating discriminator parameters to minimize: 3.2 Fixing discriminator and updating generator: Updating generator parameters to minimize: End for End for |
3. Case Study
3.1. Target Formation Overview
3.2. Sensitivity Analysis and Attribute Optimization
3.3. CGAN-Based Gas Saturation Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lan, C.; Zhang, J.; Tao, W.; Zhang, Y.; Yang, M.; Wang, J. Sedimentary characteristics and evolution of the upper carboniferous Taiyuan formation, Shenmu Gasfield, Northeastern Ordos Basin. Acta Geol. Sin. 2011, 85, 533–542. [Google Scholar]
- Li, X.; Ren, Z.; Cao, Z.; Ren, H. Study on coal drawing parameters of deeply buried hard coal seams based on PFC. Sci. Rep. 2025, 15, 21934. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, L.; Cao, Z.; Liu, J.; Xue, Y.; Wang, P.; Cao, X.; Liu, Y. Thermo-mechanical degradation and fracture evolution in low-permeability coal subjected to cyclic heating–cryogenic cooling. Phys. Fluids 2025, 37, 086617. [Google Scholar] [CrossRef]
- Mukerji, T.; Avseth, P.; Mavko, G.; Takahashi, I. Statistical rock physics: Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterisation. Lead. Edge 2001, 20, 313–319. [Google Scholar] [CrossRef]
- Avseth, P.; Janke, A.; Horn, F. AVO inversion in exploration-Key learnings from a Norwegian Sea prospect. Lead. Edge 2016, 35, 405–414. [Google Scholar] [CrossRef]
- Ramos, A.; Davis, T. 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs. Geophysics 1997, 62, 1683–1695. [Google Scholar] [CrossRef]
- Cui, R.; Chen, T.; Qian, J.; Sun, X.; Cui, D.; Qin, K. CBM(Gas) Seismic Prospecting Technology. Coal Geol. China 2012, 24, 48–56. [Google Scholar]
- Tang, H. Exploratory Study on Seismic Exploration Technology for Predicting Coalbed Methane Enrichment Zones. China Coal 2012, 38, 46–49. [Google Scholar]
- Chen, X.; Huo, Q.; Lin, J.; Wang, Y.; Sun, F.; Li, W.; Li, G. The inverse correlations between methane content and elastic parameters of coal-bed methane reservoirs. Geophysics 2013, 78, D237–D248. [Google Scholar] [CrossRef]
- Chen, X.; Huo, Q.; Lin, J.; Wang, Y.; Sun, F.; Li, W.; Li, G. Theory of CBM AVO: I. Characteristics of anomaly and why it is so. Geophysics 2014, 79, D55–D65. [Google Scholar] [CrossRef]
- Chen, Y.; Guan, D.; Chen, H.; Liu, Y.; Zheng, S. Application of Seismic Attribute Technology in Prediction of Coal Seams and Coalbed Methane Reservoirs. J. Oil Gas Technol. 2014, 36, 65–69+5–6. [Google Scholar]
- Huo, L.; Xu, L.; Shao, L.; Ding, L.; Wang, Q. Seismic prediction technologies of CBM sweet spots and their application. Nat. Gas Ind. 2014, 34, 46–52. [Google Scholar]
- Zhang, P.; Li, F.; Yang, T.; Han, F.; Gao, G.; Zhang, C. Application of AVO technique in the prediction of low-rank CBM in Jiergalangtu Sag of Erlian Basin. Pet. Geol. Oilfield Dev. Daqing 2021, 40, 129–136. [Google Scholar] [CrossRef]
- Gray, D. Seismic Anisotropy in Coal Beds. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2005; pp. 142–145. [Google Scholar] [CrossRef]
- Peng, S.; Gao, Y.; Yang, R.; Yang, R.; Chen, H.; Chen, X. Theory and application of AVO for detection of coalbed methane—A case from the Huainan coalfield. Chin. J. Geophys. 2005, 48, 1475–1486. (In Chinese) [Google Scholar]
- Peng, S.; Chen, H.; Yang, R.; Gao, Y.; Chen, X. Factors facilitating or limiting the use of AVO for coal-bed methane. Geophysics 2006, 71, C49–C56. [Google Scholar] [CrossRef]
- Feng, X.; Qin, F.; Jiao, Y.; Wang, Y.; Wang, J.; Tang, Y. Study on Seismic Reservoir Prediction Technology for Coalbed Methane in Qinshui Basin. China Coalbed Methane 2011, 8, 8–12. [Google Scholar]
- Meng, M.; Wang, Y.; Mao, Q.; Zheng, X.; Xie, W. The application of frequency attenuation gradient in Coalbed Methane prediction in southern Qinshui Basin. Sci. Technol. Eng. 2016, 16, 139–145. [Google Scholar]
- Dong, Y.; Liu, Y.; Shen, Y.; Zhu, Y.; Tian, Z.; Huang, H. Prediction of CBM sweet spots via matching trace decomposition-based fluid activity factor. Coal Geol. Explor. 2018, 46, 90–96+101. [Google Scholar]
- Chang, S.; Liu, D.; Wang, M. Discussion on the Role and Application Methods of Seismic Exploration Technology in Coalbed Methane Exploration and Development. China Coalbed Methane 2008, 5, 23–27. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Y.; Wang, J.; Yang, X.; Shen, Y.; Huang, H.; Xiang, K.; Xue, G. Study on the pre-stack seismic inversion prediction method for rich coal-bed-gas reservoirs: A case in southeastern Shanxi province. Chin. J. Geophys. 2016, 59, 4494–4504. (In Chinese) [Google Scholar]
- Bergen, K.; Johnson, P.; De Hoop, M.; Beroza, G. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019, 363, eaau0323. [Google Scholar] [CrossRef]
- Feng, R.; Mejer, H.; Grana, D.; Balling, N. An unsupervised deep-learning method for porosity estimation based on poststack seismic data. Geophysics 2020, 85, M97–M105. [Google Scholar] [CrossRef]
- Hampson, D.; Schuelke, J.; Quirein, J. Use of multi-attribute transforms to predict log properties from seismic data. Geophysics 2001, 66, 220–236. [Google Scholar] [CrossRef]
- Ross, C. Comparison of popular AVO attributes, AVO inversion, and calibrated AVO predictions. Lead. Edge 2002, 21, 244–252. [Google Scholar] [CrossRef]
- Zhong, Z.; Carr, T.; Wu, X.; Wang, G. Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics 2019, 84, B363–B373. [Google Scholar] [CrossRef]
- Kim, Y.; Nakata, N. Geophysical inversion versus machine learning in inverse problems. Lead. Edge 2018, 37, 894–901. [Google Scholar] [CrossRef]
- Chen, D.; Gao, J.; Hou, Y.; Gao, Z. High-resolution inversion of seismic wavelet and reflectivity using iterative deep neural networks. In Proceedings of the 2019 SEG International Exposition and Annual Meeting, San Antonio, TX, USA, 15–20 September 2019; SEG: Houston, TX, USA, 2019; pp. 2538–2542. [Google Scholar] [CrossRef]
- Chen, W.; Yang, L.; Zha, B.; Zhang, M.; Chen, Y. Deep learning reservoir porosity prediction based on multilayer long short-term memory network. Geophysics 2020, 85, WA213–WA225. [Google Scholar] [CrossRef]
- Sun, S.; Nie, J.; Qu, Z.; Chen, Y.; Wang, X.; Zhu, J.; Geng, J. Oil saturation estimation and uncertainty evaluation by modeling-data-driven Gaussian mixture conditional generative adversarial networks. In First International Meeting for Applied Geoscience & Energy Expanded Abstracts; SEG: Houston, TX, USA, 2021; pp. 1691–1695. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B. Generative adversarial nets. In Proceedings of the NIPS’14: Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Available online: https://dl.acm.org/doi/10.5555/2969033.2969125 (accessed on 8 May 2022).
- Liu, M.; Jervis, W.; Li, W.; Nivlet, P. Seismic facies classification using supervised convolutional neural networks and semi-supervised generative adversarial networks. Geophysics 2020, 85, O47–O58. [Google Scholar] [CrossRef]
- Araya-Polo, M.; Farris, S.; Florez, M. Deep learning-driven velocity model building workflow. Lead. Edge 2019, 38, a871–a872. [Google Scholar] [CrossRef]
- Kaur, H.; Pham, N.; Fomel, S. Seismic data interpolation using deep learning with generative adversarial networks. Geophys. Prospect. 2020, 69, 307–326. [Google Scholar] [CrossRef]
- Picetti, F.; Lipari, V.; Bestagini, P.; Tubaro, S. Seismic image processing through the generative adversarial network. Interpretation 2019, 7, SF15–SF26. [Google Scholar] [CrossRef]
- Lu, P.; Morris, M.; Brazell, S.; Comiskey, C.; Xiao, Y. Using generative adversarial networks to improve deep-learning fault interpretation networks. Lead. Edge 2018, 37, 578–583. [Google Scholar] [CrossRef]
- Durall, R.; Tschannen, V.; Keuper, J. Generative models for the transfer of knowledge in seismic interpretation with deep learning. Lead. Edge 2021, 40, 534–542. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar] [CrossRef]
- Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the ICML’17: Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 214–223. Available online: https://dl.acm.org/doi/abs/10.5555/3305381.3305404 (accessed on 8 May 2022).
- Yang, Y.; Engquist, B.; Sun, J.; Hamfeldt, F. Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion. Geophysics 2018, 83, R43–R62. [Google Scholar] [CrossRef]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V. Improved training of wasserstein GANs. In Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5769–5779. Available online: https://dl.acm.org/doi/10.5555/3295222.3295327 (accessed on 4 July 2023).
- Maas, A.; Hannun, A.; Ng, A. Rectifier nonlinearities improve neural network acoustic models. Proc. Int. Conf. Mach. Learn. 2013, 30, 3. [Google Scholar]
Number | Attributes | Training Error (%) | Validation Error (%) |
---|---|---|---|
1 | Bulk modulus | 2.019 | 2.027 |
2 | Vp/Vs ratio | 2.004 | 2.016 |
3 | Intercept-Gradient Attributes | 1.996 | 2.014 |
4 | P-wave impedance | 1.988 | 2.011 |
5 | Lamé constant × density | 1.981 | 2.009 |
6 | Density | 1.976 | 2.008 |
7 | Lamé constant | 1.972 | 2.008 |
8 | shear modulus × density | 1.968 | 2.007 |
Well Name | Measured (m3/t) | Predicted (m3/t) | Absolute Error (m3/t) | RMSE (m3/t) |
---|---|---|---|---|
W2 | 14.2 | 15.9 | 1.7 | 1.82 |
W4 | 10.2 | 14.4 | 4.2 | 4.35 |
W12 | 14.6 | 15.0 | 0.4 | 0.51 |
W14 | 14.5 | 15.3 | 0.8 | 0.86 |
W17 | 10.8 | 14.9 | 4.1 | 4.37 |
W18 | 13.7 | 15.0 | 1.3 | 1.42 |
W19 | 13.5 | 14.0 | 0.5 | 0.52 |
W26 | 15.1 | 15.2 | 0.1 | 0.13 |
W27 | 17.5 | 16.5 | 1.0 | 1.07 |
W32 | 12.1 | 14.7 | 2.6 | 2.85 |
W35 | 17.4 | 15.6 | 1.8 | 2.03 |
W36 | 12.5 | 12.4 | 0.1 | 0.12 |
Average error | 1.6 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Sun, S.; Qi, Y.; Shi, J. Research and Application of Conditional Generative Adversarial Network for Predicting Gas Content in Deep Coal Seams. Processes 2025, 13, 3215. https://doi.org/10.3390/pr13103215
Tian L, Sun S, Qi Y, Shi J. Research and Application of Conditional Generative Adversarial Network for Predicting Gas Content in Deep Coal Seams. Processes. 2025; 13(10):3215. https://doi.org/10.3390/pr13103215
Chicago/Turabian StyleTian, Lixin, Shuai Sun, Yu Qi, and Jingxue Shi. 2025. "Research and Application of Conditional Generative Adversarial Network for Predicting Gas Content in Deep Coal Seams" Processes 13, no. 10: 3215. https://doi.org/10.3390/pr13103215
APA StyleTian, L., Sun, S., Qi, Y., & Shi, J. (2025). Research and Application of Conditional Generative Adversarial Network for Predicting Gas Content in Deep Coal Seams. Processes, 13(10), 3215. https://doi.org/10.3390/pr13103215