Comparative Study of Seal Strength and Mechanical Behavior of Untreated and Corona-Treated Polymer Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy
2.2.2. Corona Treatment
2.2.3. Surface Free Energy Measurement
2.2.4. Heat Sealing
2.2.5. Mechanical Properties and T-Peel Test for Bonding Strength
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Infrared Spectroscopy
3.2. Surface Free Energy
3.3. Mechanical Properties
3.4. Seal Strength
3.5. Correlation Analysis
4. Conclusions
- Moderate corona treatment (100 W) is optimal for polar polymers such as BOPP2 and PE, enhancing both surface energy and seal strength without causing surface degradation.
- Excessive treatment (300 W) should be avoided as it may lead to surface damage and reduced sealing performance.
- For non-polar polypropylene films, activation appears to have a negative effect on seal strength, even at relatively low power levels.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. [Google Scholar] [CrossRef]
- Shoba, H.; Ramappa; Jain, S.K. Food Packaging Technology. In Frontiers in Food Biotechnology; Springer: Singapore, 2024; pp. 121–141. ISBN 978-981-97-3261-6. [Google Scholar] [CrossRef]
- Verma, S.K.; Prasad, A.; Sonika; Katiyar, V. State of Art Review on Sustainable Biodegradable Polymers with a Market Overview for Sustainability Packaging. Mater. Today Sustain. 2024, 26, 100776. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Barrow, C.J.; Adhikari, B. The Future of Bioplastics in Food Packaging: An Industrial Perspective. Food Packag. Shelf Life 2024, 43, 101279. [Google Scholar] [CrossRef]
- Lewin, M.; Mey-Marom, A.; Frank, R. Surface Free Energies of Polymeric Materials, Additives and Minerals. Polym. Adv. Technol. 2005, 16, 429–441. [Google Scholar] [CrossRef]
- Aydemir, C.; Altay, B.N.; Akyol, M. Surface Analysis of Polymer Films for Wettability and Ink Adhesion. Color Res. Appl. 2021, 46, 489–499. [Google Scholar] [CrossRef]
- Altay, B.N.; Fleming, P.D.; Rahman, M.A.; Pekarovicova, A.; Myers, B.; Aydemir, C.; Karademir, A. Controlling Unequal Surface Energy Results Caused by Test Liquids: The Case of UV/O3 Treated PET. Sci. Rep. 2022, 12, 6772. [Google Scholar] [CrossRef] [PubMed]
- Dole, N.; Ahmadi, K.; Solanki, D.; Swaminathan, V.; Keswani, V.; Keswani, M. Corona Treatment of Polymer Surfaces to Enhance Adhesion. In Polymer Surface Modification to Enhance Adhesion: Techniques and Applications; Mittal, K.L., Netravali, A.N., Eds.; Wiley: Hoboken, NJ, USA, 2024; pp. 45–76. ISBN 9781394231034. [Google Scholar]
- Büyükpehlivan, G.A.; Oktav, M. Corona Treatment and Its Importance in Flexo Printing. In Proceedings of the Eleventh International Symposium GRID 2022, Novi Sad, Serbia, 14 April 2022; pp. 357–363. [Google Scholar] [CrossRef]
- Chen, X.; Rossi, D.; Guo, Y.; Wan, Q.G.; Chen, X.; Mohler, C.E.; Kuo, T.C.; Chen, Z. Effect of Corona Treatment on the Adhesion between a Two-Component Polyurethane Adhesive and Polypropylene. Macromolecules 2024, 57, 6646–6656. [Google Scholar] [CrossRef]
- Bunkan, A.J.C.; Hatscher, D. Direct Non-Thermal Corona Plasma Treatment in Air Pollution Control. Plasma Process. Polym. 2025, 22, 70015. [Google Scholar] [CrossRef]
- Stepczyńska, M.; Śpionek, A. Plasma Modification Effects of Thermoplastic Starch (TPS) Surface Layer: Film Wettability and Sterilization. Materials 2025, 18, 2156. [Google Scholar] [CrossRef]
- Das, B.; Chakrabarty, D.; Guha, C.; Bose, S. Effects of Corona Treatment on Surface Properties of Co-Extruded Transparent Polyethylene Film. Polym. Eng. Sci. 2021, 61, 1449–1462. [Google Scholar] [CrossRef]
- Li, J.; Shen, Z.; Tie, L.; Long, T.; Zhong, Q.; Chen, X.; Yin, C.; Liufu, L.; Huang, X.; Xiong, B.; et al. Surface Microstructure Study on Corona Discharge-Treated Polyethylene Using Positron Annihilation Spectroscopy. Molecules 2024, 29, 4147. [Google Scholar] [CrossRef]
- Selvin, M.; Shah, S.; Maria, H.J.; Thomas, S.; Tuladhar, R.; Jacob, M. Review on Recycling of Cross-Linked Polyethylene. Ind. Eng. Chem. Res. 2024, 63, 1200–1214. [Google Scholar] [CrossRef]
- Żołek-Tryznowska, Z.; Prica, M.; Pavlović, Ž.; Cveticanin, L.; Annusik, T. The Influence of Aging on Surface Free Energy of Corona Treated Packaging Films. Polym. Test. 2020, 89, 106629. [Google Scholar] [CrossRef]
- Lindner, M.; Rodler, N.; Jesdinszki, M.; Schmid, M.; Sängerlaub, S. Surface Energy of Corona Treated PP, PE and PET Films, Its Alteration as Function of Storage Time and the Effect of Various Corona Dosages on Their Bond Strength after Lamination. J. Appl. Polym. Sci. 2018, 135, 45842. [Google Scholar] [CrossRef]
- Park, S.J.; Jin, J.S. Effect of Corona Discharge Treatment on the Dyeability of Low-Density Polyethylene Film. J. Colloid Interface Sci. 2001, 236, 155–160. [Google Scholar] [CrossRef]
- O’Hare, L.A.; Leadley, S.; Parbhoo, B. Surface Physicochemistry of Corona-Discharge-Treated Polypropylene Film. Surf. Interface Anal. 2002, 33, 335–342. [Google Scholar] [CrossRef]
- Carley, J.F.; Kitze, P.T. Corona-discharge Treatment of Polyethylene Films. I. Experimental Work and Physical Effects. Polym. Eng. Sci. 1978, 18, 326–334. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, X.; Wang, Y. Study on the Behavior of BOPP Film Treated by Corona Discharge. Coatings 2020, 10, 1195. [Google Scholar] [CrossRef]
- Matsunaga, M.; Whitney, P.J. Surface Changes Brought about by Corona Discharge Treatment of Polyethylene Film and the Effect on Subsequent Microbial Colonisation. Polym. Degrad. Stab. 2000, 70, 325–332. [Google Scholar] [CrossRef]
- Pascual, M.; Balart, R.; Sánchez, L.; Fenollar, O.; Calvo, O. Study of the Aging Process of Corona Discharge Plasma Effects on Low Density Polyethylene Film Surface. J. Mater. Sci. 2008, 43, 4901–4909. [Google Scholar] [CrossRef]
- Müller, H.; Cetin, A.; Dahlmann, R.; de los Arcos, T.; Grundmeier, G. Interface Chemistry and Adhesion of Thin Bilayer Si-Organic PECVD Barrier Films on Post-Consumer Recycled Polypropylene. Surf. Coatings Technol. 2025, 512, 132392. [Google Scholar] [CrossRef]
- Farley, J.M.; Meka, P. Heat Sealing of Semicrystalline Polymer Films. III. Effect of Corona Discharge Treatment of LLDPE. J. Appl. Polym. Sci. 1994, 51, 121–131. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- van Oss, C.J. Interfacial Forces in Aqueous Media, Second Edition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 9781420015768. [Google Scholar]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/527-1 (accessed on 14 July 2025).
- ISO 527-3:2018; Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. ISO: Geneva, Switzerland, 2018.
- ISO 11339:2022; Adhesives—T-Peel Test for Flexible-to-Flexible Bonded Assemblies. ISO: Geneva, Switzerland, 2022.
- Louzi, V.C.; de Carvalho Campos, J.S. Corona Treatment Applied to Synthetic Polymeric Monofilaments (PP, PET, and PA-6). Surf. Interfaces 2019, 14, 98–107. [Google Scholar] [CrossRef]
- Gopanna, A.; Mandapati, R.N.; Thomas, S.P.; Rajan, K.; Chavali, M. Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy and Wide-Angle X-Ray Scattering (WAXS) of Polypropylene (PP)/Cyclic Olefin Copolymer (COC) Blends for Qualitative and Quantitative Analysis. Polym. Bull. 2019, 76, 4259–4274. [Google Scholar] [CrossRef]
- Segura-Méndez, K.L.; Puente-Córdova, J.G.; Rentería-Baltiérrez, F.Y.; Luna-Martínez, J.F.; Mohamed-Noriega, N. Modeling of Stress Relaxation Behavior in HDPE and PP Using Fractional Derivatives. Polymers 2025, 17, 453. [Google Scholar] [CrossRef]
- Das, B.; Chakrabarty, D.; Mukherjee, A.; Guha, C.; Bose, S. Pattern of Surface Energy (Tension) Change after Coating/Printing on a Pretreated (Low Density /Linear Low Density Poly Ethylene) Co-Extruded Plastic Film Surface and Its Consequences on Lamination and Overprinting. Polym. Eng. Sci. 2025, 65, 560–575. [Google Scholar] [CrossRef]
- Vishnuvarthanan, M.; Rajeswari, N. Effect of Mechanical, Barrier and Adhesion Properties on Oxygen Plasma Surface Modified PP. Innov. Food Sci. Emerg. Technol. 2015, 30, 119–126. [Google Scholar] [CrossRef]
- Popelka, A.; Novák, I.; Al-Maadeed, M.A.S.A.; Ouederni, M.; Krupa, I. Effect of Corona Treatment on Adhesion Enhancement of LLDPE. Surf. Coatings Technol. 2018, 335, 118–125. [Google Scholar] [CrossRef]
- Szramowski, H.; Krzemiński, M.P. Comparative Analysis of Primers and Alternative Polypropylene Pre-Treatment Techniques. J. Adhes. 2024, 100, 867–889. [Google Scholar] [CrossRef]





| Sample: Details | Thickness in μm | Polymer Compound 1 | 
|---|---|---|
| PE: transparent, 50 μm | 49.9 ± 0.1 | Polyethylene | 
| OPP1: oriented, white opaque, 35 μm | 34.5 ± 0.5 | Polypropylene | 
| OPP2: white with increased gloss, 40 μm | 37.7 ± 0.3 | Polypropylene | 
| OPP: oriented, transparent, 20 μm | 21.2 ± 0.8 | Polypropylene | 
| BOPP: biaxially oriented, transparent, 25 μm | 26.7 ± 0.3 | Polypropylene | 
| BOPP2: pearly white biaxially oriented polypropylene film with increased density, gloss, and microporous structure, 40 μm | 41.4 ± 0.6 | Polypropylene | 
| Film | Property | Corona Treatment | ||
|---|---|---|---|---|
| 0 | 100 | 300 | ||
| PE | WCA (°) | 93.92 ± 3.14 a | 62.01 ± 4.45 b | 55.70 ± 2.21 c | 
| γS (mJ·m−2) | 33.08 ± 1.40 a | 43.24 ± 3.20 b | 53.74 ± 1.72 c | |
| (mJ·m−2) | 31.88 ± 1.51 b | 25.86 ± 0.90 a | 38.36 ± 1.46 c | |
| (mJ·m−2) | 1.20 ± 0.65 a | 17.38 ± 2.55 b | 15.38 ± 1.25 b | |
| OPP1 | WCA (°) | 101.05 ± 1.87 a | 70.67 ± 2.94 b | 61.34 ± 1.84 c | 
| γS (mJ·m−2) | 29.23 ± 1.99 a | 47.43 ± 1.74 b | 52.22 ± 1.10 c | |
| (mJ·m−2) | 28.81 ± 2.15 a | 40.51 ± 0.94 b | 40.92 ± 0.82 b | |
| (mJ·m−2) | 0.42 ± 0.25 a | 6.92 ± 1.19 b | 11.30 ± 1.01 c | |
| OPP2 | WCA (°) | 98.81 ± 3.03 a | 58.24 ± 2.57 b | 63.11 ± 4.22 b | 
| γS (mJ·m−2) | 29.48 ± 1.17 a | 48.45 ± 1.63 b | 49.97 ± 2.04 b | |
| (mJ·m−2) | 28.76 ± 1.15 a | 31.54 ± 1.62 b | 38.77 ± 1.88 c | |
| (mJ·m−2) | 0.72 ± 0.42 a | 16.92 ± 1.96 c | 11.20 ± 2.58 b | |
| OPP | WCA (°) | 100.66 ± 2.23 a | 53.08 ± 3.38 b | 56.78 ± 2.56 b | 
| γS (mJ·m−2) | 28.88 ± 2.31 a | 52.54 ± 2.25 b | 51.64 ± 2.29 b | |
| (mJ·m−2) | 28.39 ± 2.36 a | 33.29 ± 1.08 b | 35.77 ± 2.33 b | |
| (mJ·m−2) | 0.48 ± 0.23 a | 19.26 ± 2.11 c | 15.87 ± 1.56 b | |
| BOPP | WCA (°) | 87.68 ± 2.78 a | 44.63 ± 2.90 b | 56.94 ± 2.92 c | 
| γS (mJ·m−2) | 34.75 ± 1.94 a | 55.59 ± 2.01 b | 53.16 ± 2.32 b | |
| (mJ·m−2) | 32.14 ± 1.95 b | 27.64 ± 0.87 a | 38.59 ± 1.50 c | |
| (mJ·m−2) | 2.61 ± 0.85 a | 27.94 ± 1.88 c | 14.57 ± 1.38 b | |
| BOPP2 | WCA (°) | 98.43 ± 2.03 a | 60.08 ± 3.30 b | 61.57 ± 2.16 b | 
| γS (mJ·m−2) | 29.44 ± 0.95 a | 48.98 ± 2.97 b | 50.27 ± 1.44 b | |
| (mJ·m−2) | 28.69 ± 0.96 a | 34.53 ± 2.43 b | 38.09 ± 1.05 c | |
| (mJ·m−2) | 0.75 ± 0.29 a | 14.45 ± 1.57 b | 12.19 ± 1.17 b | |
| Film | Property | Corona Treatment | ||
|---|---|---|---|---|
| 0 | 100 | 300 | ||
| PE | Young’s Modulus (MPa) | 122 ± 17 a | 124 ± 23a | 143 ± 17 a | 
| Tensile Strength (MPa) | 19 ± 1 b | 15 ± 4 a | 25 ± 8 c | |
| Elongation at break (%) | 407 ± 49 a | 517 ± 131 b | 792 ± 35 c | |
| OPP1 | Young’s Modulus (MPa) | 2106 ± 325 b | 2312 ± 226 b | 1384 ± 394 a | 
| Tensile Strength (MPa) | 164 ± 15 c | 118 ± 13 b | 82 ± 13 a | |
| Elongation at break (%) | 36 ± 9 a | 16 ± 3 a | 110 ± 35 b | |
| OPP2 | Young’s Modulus (MPa) | 1196 ± 108 a | 2221 ± 147 b | 1129 ± 106 a | 
| Tensile Strength (MPa) | 68 ± 12 a | 102 ± 8 b | 67 ± 8 a | |
| Elongation at break (%) | 108 ± 29 b | 11 ± 2 a | 97 ± 18 b | |
| OPP | Young’s Modulus (MPa) | 2536 ± 580 | 2750 ± 374 | 2562 ± 361 | 
| Tensile Strength (MPa) | 207 ± 44 b | 112 ± 18 a | 183 ± 56 b | |
| Elongation at break (%) | 36 ± 14 b | 11 ± 3 a | 28 ± 14 b | |
| BOPP | Young’s Modulus (MPa) | 1686 ± 129 a | 2698 ± 298 b | 2726 ± 380 b | 
| Tensile Strength (MPa) | 90 ± 9 a | 114 ± 13 b | 123 ± 8 b | |
| Elongation at break (%) | 141 ± 20 b | 10 ± 1 a | 10 ± 1 a | |
| BOPP2 | Young’s Modulus (MPa) | 2243 ± 24 | 2546 ± 356 | 2447 ± 451 | 
| Tensile Strength (MPa) | 173 ± 8 a | 147 ± 9 b | 141 ± 13 b | |
| Elongation at break (%) | 20 ± 2 b | 15 ± 2 a | 13 ± 2 a | |
| Film | Seal Strength (N·mm−1) | ||
|---|---|---|---|
| 0 | 100 | 300 | |
| PE | 0.549 ± 0.080 ab | 0.609 ± 0.073 b | 0.513 ± 0.034 a | 
| OPP1 | 0.093 ± 0.013 b | 0.066 ± 0.013 a | 0.076 ± 0.019 ab | 
| OPP2 | 0.110 ± 0.031 b | 0.085 ± 0.029 ab | 0.076 ± 0.018 a | 
| OPP | 0.135 ± 0.036 | 0.103 ± 0.023 | 0.114 ± 0.020 | 
| BOPP | 0.213 ± 0.011 b | 0.183 ± 0.026 b | 0.143 ± 0.043 a | 
| BOPP2 | 0.231 ± 0.068 | 0.267 ± 0.041 | 0.202 ± 0.034 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żołek-Tryznowska, Z.; Cudna, K.; Tryznowski, M. Comparative Study of Seal Strength and Mechanical Behavior of Untreated and Corona-Treated Polymer Films. Processes 2025, 13, 3190. https://doi.org/10.3390/pr13103190
Żołek-Tryznowska Z, Cudna K, Tryznowski M. Comparative Study of Seal Strength and Mechanical Behavior of Untreated and Corona-Treated Polymer Films. Processes. 2025; 13(10):3190. https://doi.org/10.3390/pr13103190
Chicago/Turabian StyleŻołek-Tryznowska, Zuzanna, Kamila Cudna, and Mariusz Tryznowski. 2025. "Comparative Study of Seal Strength and Mechanical Behavior of Untreated and Corona-Treated Polymer Films" Processes 13, no. 10: 3190. https://doi.org/10.3390/pr13103190
APA StyleŻołek-Tryznowska, Z., Cudna, K., & Tryznowski, M. (2025). Comparative Study of Seal Strength and Mechanical Behavior of Untreated and Corona-Treated Polymer Films. Processes, 13(10), 3190. https://doi.org/10.3390/pr13103190
 
        




 
       