Multi-Physics Coupling Simulation of H2O–CO2 Co-Electrolysis Using Flat Tubular Solid Oxide Electrolysis Cells
Abstract
1. Introduction
2. Numerical Model
2.1. Governing Equations
2.1.1. Electrochemical Reaction
2.1.2. Gas Flow
2.1.3. Heat Transfer
2.1.4. Chemical Reaction
2.2. Geometric Model and Boundary Conditions
3. Results and Discussion
3.1. Model Validation
3.2. Physical Field Distributions
3.2.1. Current Density Distribution
3.2.2. Gas Composition Distribution
3.2.3. Temperature Distribution
3.2.4. Stress Distribution
3.2.5. Effect of Operating Pressure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar]
- Kang, S.; Pan, Z.; Guo, J.; Zhou, Y.; Wang, J.; Fan, L.; Zheng, C.; Cha, S.W.; Zhong, Z. Scientometric analysis of research trends on solid oxide electrolysis cells for green hydrogen and syngas production. Front. Energy 2024, 18, 583–611. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, X.; Tang, C.; Wang, N.; Ye, S. How AI guided the development of green hydrogen production: In the case of solid oxide electrolysis cell? J. Mater. Inform. 2025, 5, 25. [Google Scholar] [CrossRef]
- Ferrete, F.; Molina, A.; Cabello González, G.M.; Moreno-Racero, Á.; Olmedo, H.; Iranzo, A. Solid Oxide Electrolyzers Process Integration: A Comprehensive Review. Processes 2025, 13, 2656. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, Q.; Ni, M.; Lyu, R.; Li, P.; Chan, S.H. Activation and failure mechanism of La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ air electrode in solid oxide electrolyzer cells under high-current electrolysis. Int. J. Hydrogen Energy 2018, 43, 5437–5450. [Google Scholar] [CrossRef]
- Cunjin, Z.; Shuaibo, Q.; Hui, G.; Peng, J. High hydrogen evolution activities of dual-metal atoms incorporated N-doped graphenes achieved by coordination regulation. J. Mater. Inform. 2024, 4, 1. [Google Scholar]
- Wang, S.; Chen, H.; Hu, S.; Zhao, W.; Chen, M.; Chen, D.; Xu, X. Characterization of Hydrogen-in-Oxygen Changes in Alkaline Electrolysis Hydrogen Production System and Analysis of Influencing Factors. Processes 2025, 13, 2517. [Google Scholar] [CrossRef]
- Dogu, D.; Gunduz, S.; Meyer, K.E.; Deka, D.J.; Co, A.C.; Ozkan, U.S. CO2 and H2O electrolysis using solid oxide electrolyzer cell (SOEC) with La and Cl-doped strontium titanate cathode. Catal. Lett. 2019, 149, 1743–1752. [Google Scholar] [CrossRef]
- Pan, Z.; Duan, C.; Pritchard, T.; Thatte, A.; White, E.; Braun, R.; O’hAyre, R.; Sullivan, N.P. High-yield electrochemical upgrading of CO2 into CH4 using large-area protonic ceramic electrolysis cells. Appl. Catal. B 2022, 307, 121196. [Google Scholar] [CrossRef]
- Cifrain, M.; Kordesch, K.V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J. Power Sources 2004, 127, 234–242. [Google Scholar] [CrossRef]
- Gülzow, E. Alkaline fuel cells: A critical view. J. Power Sources 1996, 61, 99–104. [Google Scholar] [CrossRef]
- International Energy Agency. 2014 Annual Report; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sources 2004, 130, 61–76. [Google Scholar] [CrossRef]
- Sishtla, C.; Koncar, G.; Platon, R.; Gamburzev, S.; Appleby, A.J.; Velev, O.A. Performance and endurance of a PEMFC operated with synthetic reformate fuel feed. J. Power Sources 1998, 71, 249–255. [Google Scholar] [CrossRef]
- Gardner, F.J.; Day, M.J.; Brandon, N.P.; Pashley, M.N.; Cassidy, M. SOFC technology development at Rolls-Royce. J. Power Sources 2000, 86, 122–129. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, Y.; Li, W.; Cai, N. Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide. Energy 2014, 70, 420–434. [Google Scholar] [CrossRef]
- Luo, Y.; Li, W.; Shi, Y.; Cao, T.; Ye, X.; Wang, S.; Cai, N. Experimental characterization and theoretical modeling of methane production by H2O/CO2 co-electrolysis in a tubular solid oxide electrolysis cell. J. Electrochem. Soc. 2015, 162, F1129. [Google Scholar] [CrossRef]
- Chen, B.; Xu, H.; Ni, M. Modelling of SOEC-FT reactor: Pressure effects on methanation process. Appl. Energy 2017, 185, 814–824. [Google Scholar] [CrossRef]
- Cui, T.; Xiao, G.; Yan, H.; Zhang, Y.; Wang, J.-Q. Numerical simulation and analysis of the thermal stresses of a planar solid oxide electrolysis cell. Int. J. Green Energy 2023, 20, 432–444. [Google Scholar] [CrossRef]
- Fan, P.; Li, G.; Zeng, Y.; Zhang, X. Numerical study on thermal stresses of a planar solid oxide fuel cell. Int. J. Therm. Sci. 2014, 77, 1–10. [Google Scholar] [CrossRef]
- Guan, W.; Du, Z.; Wang, J.; Jiang, L.; Yang, J.; Zhou, X.-D. Mechanisms of performance degradation induced by thermal cycling in solid oxide fuel cell stacks with flat-tube anode-supported cells based on double-sided cathodes. Int. J. Hydrogen Energy 2020, 45, 19840–19846. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Z.; Zhang, J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochem. Energy Rev. 2021, 4, 508–517. [Google Scholar] [CrossRef]
- Sun, X.; Chen, M.; Jensen, S.H.; Ebbesen, S.D.; Graves, C.; Mogensen, M. Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells. Int. J. Hydrogen Energy 2012, 37, 17101–17110. [Google Scholar] [CrossRef]
- Yu, C.; Pan, Z.; Zhang, H.; Chen, B.; Guan, W.; Miao, B.; Chan, S.H.; Zhong, Z.; Zhou, Y. Numerical multi-physical optimization of operating condition and current collecting setup for large-area solid oxide fuel cells. Front. Energy 2024, 18, 356–368. [Google Scholar] [CrossRef]
- Xu, H.; Chen, B.; Irvine, J.; Ni, M. Modeling of CH4-assisted SOEC for H2O/CO2 co-electrolysis. Int. J. Hydrogen Energy 2016, 41, 21839–21849. [Google Scholar] [CrossRef]
- Xiong, X.; Liang, K.; Ma, G.; Ba, L. Three-dimensional multi-physics modelling and structural optimization of SOFC large-scale stack and stack tower. Int. J. Hydrogen Energy 2023, 48, 2742–2761. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, M.C. Numerical investigation of flow/heat transfer and structural stress in a planar solid oxide fuel cell. Int. J. Hydrogen Energy 2017, 42, 18504–18513. [Google Scholar] [CrossRef]
- Pianko-Oprych, P.; Zinko, T.; Jaworski, Z. A Numerical Investigation of the Thermal Stresses of a Planar Solid Oxide Fuel Cell. Materials 2016, 9, 814. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.W.; Armstrong, T.R.; Carneim, R.D.; Pederson, L.R.; Weber, W.J. Electrochemical properties of mixed conducting perovskites La(1-x)M(x)Co(1-y)Fe(y)O(3-delta) (M = Sr, Ba, Ca). J. Electrochem. Soc. 1996, 143, 2722–2729. [Google Scholar] [CrossRef]
- Xu, H.R.; Chen, B.; Liu, J.; Ni, M. Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration. Appl. Energy 2016, 178, 353–362. [Google Scholar] [CrossRef]
- Ali, S.; Sørensen, K.; Nielsen, M.P. Modeling a novel combined solid oxide electrolysis cell (SOEC)-Biomass gasification renewable methanol production system. Renew. Energy 2020, 154, 1025–1034. [Google Scholar] [CrossRef]
- Baxter, S.J.; Rine, M.; Min, B.; Liu, Y.; Yao, J. Near 100% CO2 conversion and CH4 selectivity in a solid oxide electrolysis cell with integrated catalyst operating at 450 °C. J. CO2 Util. 2022, 59, 101954. [Google Scholar] [CrossRef]
- Zhang, Z.; Yue, D.; Yang, G.; Chen, J.; Zheng, Y.; Miao, H.; Wang, W.; Yuan, J.; Huang, N. Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs. Int. J. Heat Mass Transf. 2015, 84, 942–954. [Google Scholar] [CrossRef]
- Rui, W.; Lucas, R.P.; Yu, Z. Sulfur poisoning mechanism of LSCF cathode material in the presence of SO2: A computational and experimental study. J. Mater. Inform. 2023, 3, 3. [Google Scholar]
- Yu, C.; Guo, Z.; Pan, Z.; Zhou, Y.; Zhang, H.; Chen, B.; Tan, P.; Guan, W.; Zhong, Z. Performance and stress analysis of flat-tubular solid oxide fuel cells fueled with methane and hydrogen. Acta Mech. Solida Sin. 2024, 38, 402–414. [Google Scholar] [CrossRef]
- Jiang, C.; Gu, Y.; Guan, W.; Ni, M.; Sang, J.; Zhong, Z.; Singhal, S.C. Thermal Stress Analysis of Solid Oxide Fuel Cell with Z-type and Serpentine-Type Channels Considering Pressure Drop. J. Electrochem. Soc. 2020, 167, 044517. [Google Scholar] [CrossRef]
- Haberman, B.; Young, J. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. Int. J. Heat Mass Transf. 2004, 47, 3617–3629. [Google Scholar] [CrossRef]
- Xi, C.; Sang, J.; Wu, A.; Yang, J.; Qi, X.; Guan, W.; Wang, J.; Singhal, S.C. Electrochemical performance and durability of flat-tube solid oxide electrolysis cells for H2O/CO2 co-electrolysis. Int. J. Hydrogen Energy 2022, 47, 10166–10174. [Google Scholar] [CrossRef]
- Xie, K.; Zhang, Y.; Meng, G.; Irvine, J.T.S. Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser. Energy Environ. Sci. 2011, 4, 2218. [Google Scholar] [CrossRef]
- Shimonosono, T.; Ueno, T.; Hirata, Y. Mechanical and thermal properties of porous yttria-stabilized zirconia. J. Asian Ceram. Soc. 2019, 7, 20–30. [Google Scholar] [CrossRef]
- Du, Y.; Qin, Y.; Zhang, G.; Yin, Y.; Jiao, K.; Du, Q. Modelling of effect of pressure on co-electrolysis of water and carbon dioxide in solid oxide electrolysis cell. Int. J. Hydrogen Energy 2019, 44, 3456–3469. [Google Scholar] [CrossRef]
- Henke, M.; Willich, C.; Kallo, J.; Friedrich, K.A. Theoretical study on pressurized operation of solid oxide electrolysis cells. Int. J. Hydrogen Energy 2014, 39, 12434–12439. [Google Scholar] [CrossRef]
- Bernadet, L.; Gousseau, G.; Chatroux, A.; Laurencin, J.; Mauvy, F.; Reytier, M. Influence of pressure on solid oxide electrolysis cells investigated by experimental and modeling approach. Int. J. Hydrogen Energy 2015, 40, 12918–12928. [Google Scholar] [CrossRef]
Technology | AECs | PEMECs | SOECs |
---|---|---|---|
Electrolyte | Potassium hydroxide | Proton exchange membrane | Solid oxide |
Operating temperature | 70–90 °C | 80–150 °C | 600–1000 °C |
Charge carrier | OH− | H+ | O2− |
Electrolyte state | Immobilized liquid | Hydrated solid | Solid |
Electrodes | Transition metals | Carbon | Ceramic/Metal cermet |
Catalyst | Platinum | Platinum | Ni-Cermet |
Reactant | Pure H2O | Pure H2O | H2O(g), CO2 |
Efficiency (% LHV of H2) | 56–69 | 56–83 | >80 |
References | [10,11,12] | [12,13,14] | [12,15] |
Parameters | Value | Unit |
---|---|---|
Ionic conductivity of cathode [27] | S·m−1 | |
Ionic conductivity of anode [27] | S·m−1 | |
Ionic conductivity of electrolyte [27] | S·m−1 | |
Electronic conductivity of anode [28] | 30,300 | S·m−1 |
Electronic conductivity of cathode [29] | 17,000 | S·m−1 |
Electronic conductivity of interconnect [28] | 769,000 | S·m−1 |
AVa [30] | 2.14 × 105 | m−2 |
AVc [30] | 2.14 × 105 | m−2 |
Component | Porosity | Permeability (m2) | Thermal Conductivity (W·m−1·K−1) | Thermal Capacity (J·Kg−1·K−1) |
---|---|---|---|---|
Anode functional layer | 0.23 | 1 × 10−12 | 11 | 450 |
Anode support layer | 0.46 | 1 × 10−10 | 11 | 450 |
Electrolyte | - | - | 2.7 | 550 |
Cathode layer | 0.3 | 1 × 10−12 | 6 | 430 |
Interconnect | - | - | 20 | 550 |
Component | E (GPa) | ν (-) | CET (10−6·K−1) |
---|---|---|---|
Anode functional layer | 213 | 0.3 | 11.4 |
Anode | 220 | 0.3 | 12.5 |
Electrolyte | 205 | 0.3 | 10.3 |
Cathode | 160 | 0.3 | 11.4 |
SOFC_S | |
---|---|
Ni-3YSZ supporting layer (mm3) | 98.6 × 46 × 4.7 |
NiO + 8YSZ anode functional layer (mm3) | 85.5 × 41 × 0.02 |
YSZ electrolyte layer (mm3) | 85.5 × 41 × 0.01 |
LSCF perovskite cathode layer (mm3) | 85.5 × 41 × 0.02 |
Number of steam channels | 13 |
Number of metallic alloy interconnect ribs | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Ding, W.; Shen, J.; Liao, P.; Yu, C.; Miao, B.; Zhou, Y.; Li, H.; Zhang, H.; Zhong, Z. Multi-Physics Coupling Simulation of H2O–CO2 Co-Electrolysis Using Flat Tubular Solid Oxide Electrolysis Cells. Processes 2025, 13, 3192. https://doi.org/10.3390/pr13103192
Cheng C, Ding W, Shen J, Liao P, Yu C, Miao B, Zhou Y, Li H, Zhang H, Zhong Z. Multi-Physics Coupling Simulation of H2O–CO2 Co-Electrolysis Using Flat Tubular Solid Oxide Electrolysis Cells. Processes. 2025; 13(10):3192. https://doi.org/10.3390/pr13103192
Chicago/Turabian StyleCheng, Chaolong, Wen Ding, Junfeng Shen, Penghui Liao, Chengrong Yu, Bin Miao, Yexin Zhou, Hui Li, Hongying Zhang, and Zheng Zhong. 2025. "Multi-Physics Coupling Simulation of H2O–CO2 Co-Electrolysis Using Flat Tubular Solid Oxide Electrolysis Cells" Processes 13, no. 10: 3192. https://doi.org/10.3390/pr13103192
APA StyleCheng, C., Ding, W., Shen, J., Liao, P., Yu, C., Miao, B., Zhou, Y., Li, H., Zhang, H., & Zhong, Z. (2025). Multi-Physics Coupling Simulation of H2O–CO2 Co-Electrolysis Using Flat Tubular Solid Oxide Electrolysis Cells. Processes, 13(10), 3192. https://doi.org/10.3390/pr13103192