Investigation of the Temperature Effect on Oil–Water–Rock Interaction Mechanisms During Low-Salinity Water Flooding in Tight Sandstone Reservoirs
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Interfacial Tension Measurement
2.3. Interfacial Rheology of Crude Oil/Brine Interface
2.4. Zeta Potential Measurements
2.5. Contact Angle Measurements
2.6. Crude Oil Adsorption Experiments
2.7. Core Flooding Experiments
2.8. Ion Chromatography Analysis
3. Results
3.1. Temperature-Dependent Behavior of Mixed Waters
3.2. Temperature Response of Oil–Water Interfacial Tension
3.3. Temperature-Driven Wettability Alteration
4. Discussion
4.1. Cation Release and Interfacial Reaction Mechanism
4.2. Zeta Potential Shift and Wettability Alteration
4.3. Interfacial Rheological Stability Mechanism
4.4. Desorption Mechanism of Polar Components
4.5. Oil Displacement Mechanism and Strategy Optimization of Low-Salinity Water Flooding in High-Temperature Reservoirs
4.6. Combined Effects of Temperature and Salinity
5. Conclusions
- (1)
- Elevated temperature significantly enhances mineral dissolution and cation exchange, particularly releasing Ca2+ and Mg2+ from the rock surface. At 70 °C, the concentration of these divalent ions increased by up to 33% compared to 30 °C, indicating intensified rock–fluid interactions and improved wettability modification.
- (2)
- Temperature reduces oil–water interfacial tension across all salinity conditions. The minimum IFT value of 9.308 mN/m was achieved at 70 °C with 0.4 PW salinity. High temperature facilitates the migration of asphaltenes and enhances ion binding capacity, resulting in a more stable oil–water interface.
- (3)
- The combination of 70 °C and 0.6 PW salinity yields optimal wettability alteration, with the highest wettability alteration index and most favorable zeta potential values. Temperature accelerates the development of negative interfacial charge, stabilizes the water film, and promotes a stronger water-wet rock surface.
- (4)
- The synergistic effect of temperature and optimized salinity simultaneously enhances interfacial rheological properties and promotes desorption of polar components (resins and asphaltenes). The increased elastic modulus and improved desorption behavior contribute significantly to enhanced oil displacement efficiency.
- (5)
- The sequential injection strategy employing 0.6 PW followed by 0.4 PW at 70 °C achieved the highest oil recovery (34.89%), substantially outperforming both high-salinity and ultra-low-salinity flooding scenarios. This demonstrates the critical importance of combining temperature optimization with salinity management for effective enhanced oil recovery in tight sandstone formations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LSW | Low-Salinity Water |
FW | Formation Water |
PW | Produced Water |
EOR | Enhanced Oil Recovery |
IFT | Interfacial Tension |
XRD | X-Ray Diffraction |
G′, G″ | Elastic Modulus and Viscous Modulus |
ζ | Zeta Potential |
K | Permeability |
φ | Porosity |
θ | Contact angle |
cosθ | Cosine of the Contact Angle |
Q | Quartz |
F | Feldspar |
I | Illite |
Kao | Kaolinite |
Chl | Chlorite |
References
- Ren, D.-Z.; Sun, W.; Huang, H.; Nan, J.-X.; Chen, B. Determination of microscopic waterflooding characteristics and influence factors in ultra-low permeability sandstone reservoir. J. Cent. South Univ. 2017, 24, 2134–2144. [Google Scholar] [CrossRef]
- Lin, R.; Yu, Z.; Zhao, J.; Dai, C.; Sun, Y.; Ren, L.; Xie, M. Experimental evaluation of tight sandstones reservoir flow characteristics under CO2–Brine–Rock multiphase interactions: A case study in the Chang 6 layer, Ordos Basin, China. Fuel 2022, 309, 122167. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Zhang, B.; Fan, P.; Li, F.; Chai, R.; Xue, L. Application and mechanisms of high-salinity water desalination for enhancing oil recovery in tight sandstone reservoir. Desalination 2025, 614, 119165. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Zhang, B.; Li, J.; Fan, P.; Chai, R.; Xue, L. Low-salinity water flooding in Middle East offshore carbonate reservoirs: Adaptation to reservoir characteristics and dynamic recovery mechanisms. Phys. Fluids 2025, 37, 076605. [Google Scholar] [CrossRef]
- Derkani, M.; Fletcher, A.; Abdallah, W.; Sauerer, B.; Anderson, J.; Zhang, Z. Low Salinity Waterflooding in Carbonate Reservoirs: Review of Interfacial Mechanisms. Colloids Interfaces 2018, 2, 20. [Google Scholar] [CrossRef]
- Ding, H.; Mettu, S.; Rahman, S.S. Impacts of Smart Waters on Calcite–Crude Oil Interactions Quantified by “Soft Tip” Atomic Force Microscopy (AFM) and Surface Complexation Modeling (SCM). Ind. Eng. Chem. Res. 2020, 59, 20337–20348. [Google Scholar] [CrossRef]
- Ghasemi, M.; Shafiei, A. Atomistic insights into role of low salinity water on montmorillonite-brine interface: Implications for EOR from clay-bearing sandstone reservoirs. J. Mol. Liq. 2022, 353, 118803. [Google Scholar] [CrossRef]
- Fredriksen, S.B.; Rognmo, A.U.; Fernø, M.A. Pore-scale mechanisms during low salinity waterflooding: Oil mobilization by diffusion and osmosis. J. Pet. Sci. Eng. 2018, 163, 650–660. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Wang, Y.; Yang, R.; Zhang, Y.; Gu, J.; Zhang, M.; Ren, S. Experimental Investigation of Low-Salinity Water Flooding in a Low-Permeability Oil Reservoir. Energy Fuels 2018, 32, 3108–3118. [Google Scholar] [CrossRef]
- Tiwari, P.; Rupesh, R.; Sharma, S.P.; Ciazela, J. Dynamics of Saltwater Intrusion in a Heterogeneous Coastal Environment: Experimental, DC Resistivity, and Numerical Modeling Approaches. Water 2024, 16, 1950. [Google Scholar] [CrossRef]
- Gao, P.; Qiu, Q.; Jiang, G.; Zhang, C.; Hu, S.; Lei, Y.; Wang, X. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: New findings from deep borehole steady-state temperature measurements. Geophys. J. Int. 2018, 214, 254–264. [Google Scholar] [CrossRef]
- Qi, K.; Ren, Z.; Cui, J.; Yu, Q.; Bai, F.; Liu, X.; Chen, Z.; Xing, G. Present-day deep geothermal field and lithospheric thermal structure in the Ordos Basin. Geothermics 2025, 125, 103198. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, Y. Distribution and formation of Mesozoic low permeability underpressured oil reservoirs in the Ordos Basin, China. J. Pet. Sci. Eng. 2020, 187, 106755. [Google Scholar] [CrossRef]
- Zhang, P.; Austad, T. Wettability and oil recovery from carbonates: Effects of temperature and potential determining ions. Colloids Surf. A Physicochem. Eng. Asp. 2006, 279, 179–187. [Google Scholar] [CrossRef]
- Sohal, M.A.; Thyne, G.; Søgaard, E.G. Effect of the Temperature on Wettability and Optimum Wetting Conditions for Maximum Oil Recovery in a Carbonate Reservoir System. Energy Fuels 2017, 31, 3557–3566. [Google Scholar] [CrossRef]
- Saeed, M.; Jadhawar, P.; Zhou, Y.; Abhishek, R. Triple-layer surface complexation modelling: Characterization of oil-brine interfacial zeta potential under varying conditions of temperature, pH, oil properties and potential determining ions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127903. [Google Scholar] [CrossRef]
- Onaizi, S.A. Effect of oil/water ratio on rheological behavior, droplet size, zeta potential, long-term stability, and acid-induced demulsification of crude oil/water nanoemulsions. J. Pet. Sci. Eng. 2022, 209, 109857. [Google Scholar] [CrossRef]
- Binks, B.P.; Rocher, A. Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles. J. Colloid Interface Sci. 2009, 335, 94–104. [Google Scholar] [CrossRef]
- Hao, X.; Elakneswaran, Y.; Shimokawara, M.; Kato, Y.; Kitamura, R.; Hiroyoshi, N. Impact of the Temperature, Homogenization Condition, and Oil Property on the Formation and Stability of Crude Oil Emulsion. Energy Fuels 2024, 38, 979–994. [Google Scholar] [CrossRef]
- Ayirala, S.; AlSofi, A.; AlYousef, Z.; Wang, J.; Abu Alsaud, M.; AlYousef, A. SmartWater based synergistic technologies for enhanced oil recovery. Fuel 2022, 316, 123264. [Google Scholar] [CrossRef]
- Kar, T.; Cho, H.; Firoozabadi, A. Assessment of low salinity waterflooding in carbonate cores: Interfacial viscoelasticity and tuning process efficiency by use of non-ionic surfactant. J. Colloid Interface Sci. 2022, 607, 125–133. [Google Scholar] [CrossRef]
- Shaddel, S.; Tabatabae-Nejad, S.A.; Fathi, S.J. Low-salinity water flooding: Evaluating the effect of salinity on oil and water relative permeability, wettability, and oil recovery. Spec. Top. Rev. Porous Media Int. J. 2014, 5, 133–143. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M. Review of low salinity waterflooding mechanisms: Wettability alteration and its impact on oil recovery. Fuel 2020, 267, 117112. [Google Scholar] [CrossRef]
- Mahmoudzadeh, A.; Fatemi, M.; Masihi, M. Microfluidics experimental investigation of the mechanisms of enhanced oil recovery by low salinity water flooding in fractured porous media. Fuel 2022, 314, 123067. [Google Scholar] [CrossRef]
- Navarro-Perez, D.; Fisher, Q.; Allshorn, S.; Grattoni, C.; Lorinczi, P. Multi-salinity core flooding study in clay-bearing sandstones, a contribution to geothermal reservoir characterisation. Adv. Geosci. 2024, 62, 71–80. [Google Scholar] [CrossRef]
- Iyi, D.; Balogun, Y.; Oyeneyin, B.; Faisal, N. Numerical modelling of the effect of wettability, interfacial tension and temperature on oil recovery at pore-scale level. J. Pet. Sci. Eng. 2021, 201, 108453. [Google Scholar] [CrossRef]
- Mokhtari, R.; Ayatollahi, S.; Fatemi, M. Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding. J. Pet. Sci. Eng. 2019, 182, 106194. [Google Scholar] [CrossRef]
- Atta, D.Y.; Negash, B.M.; Yekeen, N.; Habte, A.D.; Abdul Malik, A.B. Influence of natural L-amino acids on the interfacial tension of an oil-water system and rock wettability alterations. J. Pet. Sci. Eng. 2021, 199, 108241. [Google Scholar] [CrossRef]
- Abdi, A.; Awarke, M.; Malayeri, M.R.; Riazi, M. Interfacial tension of smart water and various crude oils. Fuel 2024, 356, 129563. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, F.; Ge, L.; Zhang, Q.; Chen, X.; Fan, Z.; Wang, J. Investigation of salinity and ion effects on low salinity water flooding efficiency in a tight sandstone reservoir. Energy Rep. 2023, 9, 2732–2744. [Google Scholar] [CrossRef]
- Tang, S.; Sun, Z.; Dong, Y.; Zhu, Y.; Hu, H.; Wang, R.; Liao, H.; Dai, Q. Preparation of Amphiphilic Janus-SiO2 Nanoparticles and Evaluation of the Oil Displacement Effect. ACS Omega 2024, 9, 5838–5845. [Google Scholar] [CrossRef]
- Yonebayashi, H.; Hiraiwa, T.; Tange, M.; Abed, A.A.; Yachi, H.; Katano, K.; Suzuki, T. Functional Components in Low Salinity Waterflood Forming Micro-Dispersion Phase via Fluid-Fluid Interaction in Carbonate Reservoirs. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 23–25 April 2024; p. SPE-218172-MS. [Google Scholar]
- Bartels, W.B.; Mahani, H.; Berg, S.; Hassanizadeh, S.M. Literature review of low salinity waterflooding from a length and time scale perspective. Fuel 2019, 236, 338–353. [Google Scholar] [CrossRef]
- Chai, R.; Liu, Y.; He, Y.; Cai, M.; Zhang, J.; Liu, F.; Xue, L. Effects and Mechanisms of Acidic Crude Oil–Aqueous Solution Interaction in Low-Salinity Waterflooding. Energy Fuels 2021, 35, 9860–9872. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.; Tang, J.; Liu, Z.; Yang, D. Effect of wettability on oil and water distribution and production performance in a tight sandstone reservoir. Fuel 2023, 341, 127680. [Google Scholar] [CrossRef]
- Deng, X.; Tariq, Z.; Murtaza, M.; Patil, S.; Mahmoud, M.; Kamal, M.S. Relative contribution of wettability Alteration and interfacial tension reduction in EOR: A critical review. J. Mol. Liq. 2021, 325, 115175. [Google Scholar] [CrossRef]
- He, Y.; Liu, Y.; Li, J.; Fan, P.; Liu, X.; Chai, R.; Xue, L. Experimental study on the effect of CO2 dynamic sequestration on sandstone pore structure and physical properties. Fuel 2024, 375, 132622. [Google Scholar] [CrossRef]
- Mingjie, L.I.U.; Zhen, L.I.U.; Peng, W.; Gaofeng, P.A.N. Diagenesis of the Triassic Yanchang Formation Tight Sandstone Reservoir in the Xifeng–Ansai Area of Ordos Basin and its Porosity Evolution. Acta Geol. Sin.-Engl. Ed. 2016, 90, 956–970. [Google Scholar] [CrossRef]
- Chai, R.; Liu, Y.; He, Y.; Liu, Q.; Xue, L. Dynamic behaviors and mechanisms of fluid-fluid interaction in low salinity waterflooding of carbonate reservoirs. J. Pet. Sci. Eng. 2022, 208, 109256. [Google Scholar] [CrossRef]
- SY/T 5119-2016; Analytical Method of Soluble Organic Matters in Rocks and Crude Oil Group Composition Column Chromatography. National Energy Administration of China: Beijing, China, 2016.
- Zhang, K.; Lai, J.; Bai, G.; Pang, X.; Ma, X.; Qin, Z.; Zhang, X.; Fan, X. Comparison of fractal models using NMR and CT analysis in low permeability sandstones. Mar. Pet. Geol. 2020, 112, 104069. [Google Scholar] [CrossRef]
- Liang, B.; Jiang, H.; Li, J.; Gong, C.; Jiang, R.; Qu, S.; Pei, Y.; Yang, H. Investigation of Oil Saturation Development behind Spontaneous Imbibition Front Using Nuclear Magnetic Resonance T2. Energy Fuels 2017, 31, 473–481. [Google Scholar] [CrossRef]
- Johnson, E.F.; Bossler, D.P.; Bossler, V.O.N. Calculation of Relative Permeability from Displacement Experiments. Trans. AIME 1959, 216, 370–372. [Google Scholar] [CrossRef]
- SY/T 5523-2016; Method for Analysis of Oilfiled Water. National Energy Administration of China: Beijing, China, 2016.
- Rostami, P.; Mehraban, M.F.; Sharifi, M.; Dejam, M.; Ayatollahi, S. Effect of water salinity on oil/brine interfacial behaviour during low salinity waterflooding: A mechanistic study. Petroleum 2019, 5, 367–374. [Google Scholar] [CrossRef]
- Kakati, A.; Sangwai, J.S. Effect of monovalent and divalent salts on the interfacial tension of pure hydrocarbon-brine systems relevant for low salinity water flooding. J. Pet. Sci. Eng. 2017, 157, 1106–1114. [Google Scholar] [CrossRef]
- Piñerez Torrijos, I.D.; Puntervold, T.; Strand, S.; Austad, T.; Tran, V.V.; Olsen, K. Impact of temperature on the low salinity EOR effect for sandstone cores containing reactive plagioclase. J. Pet. Sci. Eng. 2017, 156, 102–109. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, M.; Bo, Z.; Bedrikovetsky, P.; Le-Hussain, F. Effect of temperature on mineral reactions and fines migration during low-salinity water injection into Berea sandstone. J. Pet. Sci. Eng. 2021, 202, 108482. [Google Scholar] [CrossRef]
- Mehraban, M.F.; Ayatollahi, S.; Sharifi, M. Experimental investigation on synergic effect of salinity and pH during low salinity water injection into carbonate oil reservoirs. J. Pet. Sci. Eng. 2021, 202, 108555. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, Z. Permeability damage micro-mechanisms and stimulation of low-permeability sandstone reservoirs: A case study from Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2020, 47, 374–382. [Google Scholar] [CrossRef]
- Chai, R.; Liu, Y.; Xue, L.; Rui, Z.; Zhao, R.; Wang, J. Formation damage of sandstone geothermal reservoirs: During decreased salinity water injection. Appl. Energy 2022, 322, 119465. [Google Scholar] [CrossRef]
- Pang, Z.X.; Liu, H.Q.; Liu, X.L. Characteristics of Formation Damage and Variations of Reservoir Properties during Steam Injection in Heavy Oil Reservoir. Pet. Sci. Technol. 2010, 28, 477–493. [Google Scholar] [CrossRef]
- Vinogradov, J.; Jackson, M.D.; Chamerois, M. Zeta potential in sandpacks: Effect of temperature, electrolyte pH, ionic strength and divalent cations. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 259–271. [Google Scholar] [CrossRef]
- Al-Hashim, H.; Kasha, A.; Abdallah, W.; Sauerer, B. Impact of Modified Seawater on Zeta Potential and Morphology of Calcite and Dolomite Aged with Stearic Acid. Energy Fuels 2018, 32, 1644–1656. [Google Scholar] [CrossRef]
- Aksulu, H.; Håmsø, D.; Strand, S.; Puntervold, T.; Austad, T. Evaluation of Low-Salinity Enhanced Oil Recovery Effects in Sandstone: Effects of the Temperature and pH Gradient. Energy Fuels 2012, 26, 3497–3503. [Google Scholar] [CrossRef]
- Perles, C.E.; Guersoni, V.C.B.; Bannwart, A.C. Rheological study of crude oil/water interface—The effect of temperature and brine on interfacial film. J. Pet. Sci. Eng. 2018, 162, 835–843. [Google Scholar] [CrossRef]
- Al-Khafaji, A.; Neville, A.; Wilson, M.; Wen, D. Effect of Low Salinity on the Oil Desorption Efficiency from Calcite and Silica Surfaces. Energy Fuels 2017, 31, 11892–11901. [Google Scholar] [CrossRef]
- Al-Sarihi, A.; Zeinijahromi, A.; Genolet, L.; Behr, A.; Kowollik, P.; Bedrikovetsky, P. Effects of Fines Migration on Residual Oil during Low-Salinity Waterflooding. Energy Fuels 2018, 32, 8296–8309. [Google Scholar] [CrossRef]
- Gharechelou, S.; Daraei, M.; Amini, A. Pore types distribution and their reservoir properties in the sequence stratigraphic framework: A case study from the Oligo-Miocene Asmari Formation, SW Iran. Arab. J. Geosci. 2016, 9, 194. [Google Scholar] [CrossRef]
- Hosseinzadehsadati, S.; Bonto, M.; Mokhtari, R.; Eftekhari, A.A.; Feilberg, K.L.; Nick, H.M. Modified salinity waterflooding in chalk reservoirs: A journey from rock and fluid interfaces to field scale applications. Fuel 2024, 356, 129461. [Google Scholar] [CrossRef]
Fraction | Saturates | Aromatics | Resins | Asphaltenes | Total |
---|---|---|---|---|---|
Content (%) | 71.54 | 22.99 | 2.77 | 2.71 | 100.00 |
Ion Concentration (mg·L−1) | Na+ | K+ | Mg2+ | Ca2+ | Cl− | SO42− | Salinity |
---|---|---|---|---|---|---|---|
PW | 1702.248 | 111.183 | 676.884 | 1365.363 | 6981.288 | 234.108 | 11,071.07 |
FW | 20,940.84 | 81.415 | 231.285 | 15,262.95 | 40,516.3 | 297.745 | 77,330.54 |
Temperature | Injection Water Type | Saturates (%) | Aromatics (%) | Resins (%) | Asphaltenes (%) |
---|---|---|---|---|---|
30 °C | PW | 74.12 | 21.93 | 2.02 | 1.93 |
0.8 PW | 73.62 | 22.08 | 2.24 | 2.06 | |
0.6 PW | 73.16 | 22.27 | 2.51 | 2.06 | |
0.4 PW | 73.46 | 22.21 | 2.32 | 2.01 | |
0.2 PW | 73.5 | 22.04 | 2.2 | 2.26 | |
70 °C | PW | 73.04 | 22.42 | 2.14 | 2.40 |
0.8 PW | 72.44 | 22.56 | 2.53 | 2.48 | |
0.6 PW | 71.87 | 22.83 | 2.87 | 2.44 | |
0.4 PW | 72.06 | 22.77 | 2.73 | 2.45 | |
0.2 PW | 72.21 | 22.53 | 2.60 | 2.65 |
Exp. | Brines Injected (Secondary-Tertiary Mode) | Porosity (vol %) | Kabs (mD) | FZI (µm) | Sw (%) | Oil Recovery (% of OOIP) | Optimality Condition |
---|---|---|---|---|---|---|---|
1 | PW | 12.4 | 0.67 | 0.1413 | 36.25 | 26.55 | Base Case |
2 | 0.4 PW | 12.6 | 0.65 | 0.1442 | 36.11 | 29.51 | Fluid/Fluid |
3 | 0.6 PW | 12.5 | 0.66 | 0.1429 | 36.19 | 32.41 | Rock/Fluid |
4 | 0.4 PW − 0.6 PW | 12.4 | 0.64 | 0.1413 | 36.18 | 29.55 + 4.81 = 34.36 | Fluid/Fluid + Rock/Fluid |
5 | 0.6 PW − 0.4 PW | 12.8 | 0.63 | 0.1468 | 36.05 | 32.38 + 2.51 = 34.89 | Rock/Fluid + Fluid/Fluid |
6 | PW − 0.4 PW − 0.6 PW | 12.4 | 0.68 | 0.1413 | 36.24 | 26.46 + 3.66 + 3.16 = 33.28 | Fluid/Fluid + Rock/Fluid |
7 | PW − 0.6 PW − 0.4 PW | 12.7 | 0.67 | 0.1454 | 36.20 | 26.77 + 5.44 + 2.25 = 34.46 | Rock/Fluid + Fluid/Fluid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Liu, Y. Investigation of the Temperature Effect on Oil–Water–Rock Interaction Mechanisms During Low-Salinity Water Flooding in Tight Sandstone Reservoirs. Processes 2025, 13, 3135. https://doi.org/10.3390/pr13103135
Sun M, Liu Y. Investigation of the Temperature Effect on Oil–Water–Rock Interaction Mechanisms During Low-Salinity Water Flooding in Tight Sandstone Reservoirs. Processes. 2025; 13(10):3135. https://doi.org/10.3390/pr13103135
Chicago/Turabian StyleSun, Min, and Yuetian Liu. 2025. "Investigation of the Temperature Effect on Oil–Water–Rock Interaction Mechanisms During Low-Salinity Water Flooding in Tight Sandstone Reservoirs" Processes 13, no. 10: 3135. https://doi.org/10.3390/pr13103135
APA StyleSun, M., & Liu, Y. (2025). Investigation of the Temperature Effect on Oil–Water–Rock Interaction Mechanisms During Low-Salinity Water Flooding in Tight Sandstone Reservoirs. Processes, 13(10), 3135. https://doi.org/10.3390/pr13103135