Fabrication of Spinel Magnesium Aluminate Doped with Divalent-First-Row Transition-Metal Oxides as Efficient Sorbents for Pharmaceutical Contaminants
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of MOA and Its Nanocomposites
2.3. Equipment and Characterization
2.4. Adsorption of DXC
3. Results and Discussion
3.1. Characterization
3.2. Contact Time and Kinetics
3.3. Sorption Equilibria
3.4. The pH and Mechanistic DXC-10Cu@MOA Interaction
3.5. Application on Real Samples
3.6. Regeneration and Reusability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, W.; Wen, X.; Zhao, Y.; Wu, X.; Zheng, H.; Chen, J.; Hu, Z.; Zhong, Q.; Wu, J. Untangling the Characteristics and Ecological Processes of Microbial Community Assembly in the Source Area of the East Route of the South-to-North Water Diversion Project in China Under Different Water Periods. Water 2025, 17, 649. [Google Scholar] [CrossRef]
- Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a sustainable resource and generator of secondary resources in the 21st century: Stressors, threats, risks, management and protection strategies, and conservation approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Kirsten, K.L.; Qadeer, A. Contaminants in the Water Environment: Significance from the Perspective of the Global Environment and Health. Water 2025, 17, 1257. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water quality degradation due to heavy metal contamination: Health impacts and eco-friendly approaches for heavy metal remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef] [PubMed]
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human health risks due to exposure to water pollution: A review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- Jurczynski, Y.; Passos, R.; Campos, L.C. A review of the most concerning chemical contaminants in drinking water for human health. Sustainability 2024, 16, 7107. [Google Scholar] [CrossRef]
- Estrada-Almeida, A.G.; Castrejón-Godínez, M.L.; Mussali-Galante, P.; Tovar-Sánchez, E.; Rodríguez, A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J. Xenobiotics 2024, 14, 1465–1518. [Google Scholar] [CrossRef]
- Assidi, M.; Buhmeida, A.; Budowle, B. Medicine and health of 21st Century: Not just a high biotech-driven solution. Npj Genom. Med. 2022, 7, 67. [Google Scholar] [CrossRef]
- Urquhart, L. Top companies and drugs by sales in 2021. Nat. Rev. Drug Discov 2022, 21, 251. [Google Scholar] [CrossRef]
- Papaioannou, C.; Geladakis, G.; Kommata, V.; Batargias, C.; Lagoumintzis, G. Insights in pharmaceutical pollution: The prospective role of eDNA metabarcoding. Toxics 2023, 11, 903. [Google Scholar] [CrossRef]
- Gurgenidze, D.; Romanovski, V. The pharmaceutical pollution of water resources using the example of the Kura River (Tbilisi, Georgia). Water 2023, 15, 2574. [Google Scholar] [CrossRef]
- Munzhelele, E.P.; Mudzielwana, R.; Ayinde, W.B.; Gitari, W.M. Pharmaceutical contaminants in wastewater and receiving water bodies of South Africa: A review of sources, pathways, occurrence, effects, and geographical distribution. Water 2024, 16, 796. [Google Scholar] [CrossRef]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Sures, B.; Schmidt, T.C. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environ. Pollut. 2018, 241, 1153–1166. [Google Scholar] [CrossRef]
- Widyasari-Mehta, A.; Hartung, S.; Kreuzig, R. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. J. Environ. Manag. 2016, 177, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Holmes, N.E.; Charles, P.G. Safety and efficacy review of doxycycline. Clin. Med. Ther. 2009, 1, CMT.S2035. [Google Scholar] [CrossRef]
- Sayğılı, G.A.; Sayğılı, H.; Koyuncu, F.; Güzel, F. Development and physicochemical characterization of a new magnetic nanocomposite as an economic antibiotic remover. Process Saf. Environ. Prot. 2015, 94, 441–451. [Google Scholar] [CrossRef]
- Hamscher, G.; Sczesny, S.; Höper, H.; Nau, H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal. Chem. 2002, 74, 1509–1518. [Google Scholar] [CrossRef]
- Szatmári, I.; Laczay, P.; Borbély, Z. Degradation of doxycycline in aged pig manure. Acta Vet. Hung. 2011, 59, 1–10. [Google Scholar] [CrossRef]
- Ibrahim, T.G.; Almufarij, R.S.; Abdulkhair, B.Y.; Ramadan, R.S.; Eltoum, M.S.; Abd Elaziz, M.E. A Thorough Examination of the Solution Conditions and the Use of Carbon Nanoparticles Made from Commercial Mesquite Charcoal as a Successful Sorbent for Water Remediation. Nanomaterials 2023, 13, 1485. [Google Scholar] [CrossRef]
- Mojiri, A. Treatment of Water and Wastewater: Challenges and solutions. Separations 2023, 10, 385. [Google Scholar] [CrossRef]
- Shraim, A.; Diab, A.; Alsuhaimi, A.; Niazy, E.; Metwally, M.; Amad, M.; Sioud, S.; Dawoud, A. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arab. J. Chem. 2017, 10, S719–S729. [Google Scholar] [CrossRef]
- Alves, T.C.; Cabrera-Codony, A.; Barceló, D.; Rodriguez-Mozaz, S.; Pinheiro, A.; Gonzalez-Olmos, R. Influencing factors on the removal of pharmaceuticals from water with micro-grain activated carbon. Water Res. 2018, 144, 402–412. [Google Scholar] [CrossRef]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2019, 12, 4897–4919. [Google Scholar] [CrossRef]
- Association, A.P.H.; Association, A.W.W.; Federation, W.P.C.; Federation, W.E. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1917; Volume 3. [Google Scholar]
- Kayiwa, R.; Kasedde, H.; Lubwama, M.; Kirabira, J.B. Active pharmaceutical ingredients sequestrated from water using novel mesoporous activated carbon optimally prepared from cassava peels. Water 2022, 14, 3371. [Google Scholar] [CrossRef]
- Keshta, B.E.; Yu, H.; Wang, L. MIL series-based MOFs as effective adsorbents for removing hazardous organic pollutants from water. Sep. Purif. Technol. 2023, 322, 124301. [Google Scholar] [CrossRef]
- Pashaei-Fakhri, S.; Peighambardoust, S.J.; Foroutan, R.; Arsalani, N.; Ramavandi, B. Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere 2021, 270, 129419. [Google Scholar] [CrossRef]
- Almufarij, R.S.; Abdulkhair, B.Y.; Salih, M.; Aldosari, H.; Aldayel, N.W. Optimization, nature, and mechanism investigations for the adsorption of ciprofloxacin and malachite green onto carbon nanoparticles derived from low-cost precursor via a green route. Molecules 2022, 27, 4577. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Ibrahim, T.G.; Almufarij, R.S.; Abdulkhair, B.Y.; Abd Elaziz, M.E. Eliminating Manifold Pharmaceutical Pollutants with Carbon Nanoparticles Driven via a Short-Duration Ball-Milling Process. Surfaces 2024, 7, 493–507. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative adsorbents for pollutant removal: Exploring the latest research and applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.; Younas, S.; Mohy-Ud-Din, W.; Ashir Hameed, M.; Mohsin Abrar, M.; Maitlo, A.A.; Noreen, S. Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Mary, B.C.J.; Vijaya, J.J.; Bououdina, M.; Khezami, L.; Modwi, A.; Ismail, M.; Bellucci, S. Study of barium adsorption from aqueous solutions using copper ferrite and copper ferrite/rGO magnetic adsorbents. Adsorpt. Sci. Technol. 2022, 2022, 3954536. [Google Scholar] [CrossRef]
- Modwi, A.; Elamin, M.R.; Idriss, H.; Elamin, N.Y.; Adam, F.A.; Albadri, A.E.; Abdulkhair, B.Y. Excellent adsorption of dyes via MgTiO3@g-C3N4 nanohybrid: Construction, description and adsorption mechanism. Inorganics 2022, 10, 210. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Li, M.; Han, M.; Gao, H.; Yang, H.; Fang, L.; Zhang, H.; Jagadeesha, A.V.; Manjunatha, S. Various carbon-based MgAl2O4 adsorbents and their removal efficiency of CR dye and antibiotics in aqueous media: High selective adsorption capacity, performance prediction and mechanism insight. Ceram. Int. 2023, 49, 26734–26746. [Google Scholar] [CrossRef]
- Yüzbasi, N.S.; Krawczyk, P.A.; Domagała, K.W.; Englert, A.; Burkhardt, M.; Stuer, M.; Graule, T. Removal of MS2 and fr bacteriophages using MgAl2O4-modified, Al2O3-stabilized porous ceramic granules for drinking water treatment. Membranes 2022, 12, 471. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, Z.; Wu, J.; Wei, H.; Gong, C.; Yoriya, S.; He, P.; Luo, G.; Yao, H. Structural reconfiguration of Al/CaO adsorbent by Ni doping to improve sintering resistance and arsenic removal performance. Appl. Surf. Sci. 2024, 652, 159325. [Google Scholar] [CrossRef]
- Almahmoud, S.A.; Alzahrani, S.S.; Abdulkhair, B.Y. Efficacious Removal of Organic Contaminants from Water Using a Novel CoO–NiO@ MgAl2O4 Nanocomposite. ACS Omega 2025, 10, 11188–11201. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Elsisi, M.E.; Mansour, A.F. Synthesis and electrochemical performance of α-Al2O3 and M-Al2O4 spinel nanocomposites in hybrid quantum dot-sensitized solar cells. Sci. Rep. 2022, 12, 17009. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Algethami, F.K.; Khezami, L. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Sci. Rep. 2021, 11, 13606. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Elzupir, A.O. Removal of ciprofloxacin and indigo carmine from water by carbon nanotubes fabricated from a low-cost precursor: Solution parameters and recyclability. Ain Shams Eng. J. 2023, 14, 101844. [Google Scholar] [CrossRef]
- Yesiltepe Özcelik, D.; Ebin, B.; Stopic, S.; Gürmen, S.; Friedrich, B. Mixed Oxides NiO/ZnO/Al2O3 Synthesized in a Single Step via Ultrasonic Spray Pyrolysis (USP) Method. Metals 2022, 12, 73. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Deraz, N.M.; Abd-Elkader, O.H. Magnetic and characterization studies of CoO/Co3O4 nanocomposite. Processes 2020, 8, 844. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Modwi, A.; Elamin, N.Y. Surfactants enhanced short durations synthesis of bismuth oxyiodide quantum dots. Inorg. Chem. Commun. 2023, 157, 111450. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef]
- Ilyas, S.; Abdullah, B.; Tahir, D. X-ray diffraction analysis of nanocomposite Fe3O4/activated carbon by Williamson–Hall and size-strain plot methods. Nano-Struct. Nano-Objects 2019, 20, 100396. [Google Scholar] [CrossRef]
- Saied, E.; Eid, A.M.; Hassan, S.E.-D.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saad, H.A.; Saied, E.M.; Fouda, A. The catalytic activity of biosynthesized magnesium oxide nanoparticles (MgO-NPs) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal. Catalysts 2021, 11, 821. [Google Scholar] [CrossRef]
- Angappan, S.; Berchmans, L.J.; Augustin, C. Sintering behaviour of MgAl2O4—A prospective anode material. Mater. Lett. 2004, 58, 2283–2289. [Google Scholar] [CrossRef]
- Mahdavi, M.; Kimiagar, S.; Abrinaei, F. Preparation of few-layered wide bandgap MoS2 with nanometer lateral dimensions by applying laser irradiation. Crystals 2020, 10, 164. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Savino, I.; Massarelli, C.; Uricchio, V.F. Fourier transform infrared spectroscopy to assess the degree of alteration of artificially aged and environmentally weathered microplastics. Polymers 2023, 15, 911. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Elamin, N.Y.; Albadri, A.; Ismail, M.; Bakheit, R.; Taha, K.K.; Modwi, A. Ru@ Co3O4@g-C3N4 as a novel adsorbent for enhanced copper and cadmium abolition. J. Sci. Adv. Mater. Devices 2024, 9, 100725. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Adam, F.A.; Ghoniem, M.; Diawara, M.; Rahali, S.; Abdulkhair, B.Y.; Elamin, M.; Aissa, M.A.B.; Seydou, M. Enhanced adsorptive removal of indigo carmine dye by bismuth oxide doped MgO based adsorbents from aqueous solution: Equilibrium, kinetic and computational studies. RSC Adv. 2022, 12, 24786–24803. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; He, J.; Wu, H.; Zhang, X. Nanometer pore structure characterization of taiyuan formation shale in the lin-xing area based on nitrogen adsorption experiments. Minerals 2021, 11, 298. [Google Scholar] [CrossRef]
- Radha, F.H.S.; Shwan, D.M.; Kaufhold, S. Adsorption study and removal of Basic Fuchsin dye from medical laboratory wastewater using local natural clay. Adsorpt. Sci. Technol. 2023, 2023, 9398167. [Google Scholar] [CrossRef]
- Khan, A.; Wang, X.; Gul, K.; Khuda, F.; Aly, Z.; Elseman, A. Microwave-assisted spent black tea leaves as cost-effective and powerful green adsorbent for the efficient removal of Eriochrome black T from aqueous solutions. Egypt. J. Basic Appl. Sci. 2018, 5, 171–182. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Lan, Y.; Wang, H.; Ma, X.; Wang, H.; Xu, H.; Liu, H. Study on the adsorption mechanism of ciprofloxacin in wastewater by modified fly ash under the coexistence of copper. J. Environ. Chem. Eng. 2024, 12, 114336. [Google Scholar] [CrossRef]
- Racovita, S.; Trofin, M.-A.; Vasiliu, A.-L.; Avadanei, M.; Loghin, D.F.; Mihai, M.; Vasiliu, S. Studies on Sorption and Release of Doxycycline Hydrochloride from Zwitterionic Microparticles with Carboxybetaine Moieties. Int. J. Mol. Sci. 2024, 25, 7871. [Google Scholar] [CrossRef]
- Huang, X.; Lee, C.-S.; Zhang, K.; Alhamzani, A.G.; Hsiao, B.S. Sodium alginate–aldehyde cellulose nanocrystal composite hydrogel for doxycycline and other tetracycline removal. Nanomaterials 2023, 13, 1161. [Google Scholar] [CrossRef]
- Teweldebrihan, M.D.; Dinka, M.O. Methyl red adsorption from aqueous solution using Rumex Abyssinicus-derived biochar: Studies of kinetics and isotherm. Water 2024, 16, 2237. [Google Scholar] [CrossRef]
- Al-Musawi, T.; Almajidi, Y.; Al-Essa, E.; Romero-Parra, R.; Alwaily, E.; Mengelizadeh, N.; Ganji, F.; Balarak, D. Levofloxacin Adsorption onto MWCNTs/CoFe2O4 Nanocomposites: Mechanism, and Modeling Using Non-Linear Kinetics and Isotherm Equations. Magnetochemistry 2023, 9, 9. [Google Scholar] [CrossRef]
- Hamad, M.T.M.H.; El-Sesy, M.E. Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. Bioresour. Bioprocess. 2023, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Miao, P.; Gao, J.; Han, X.; Zhao, Y.; Chen, T. Adsorption of levofloxacin onto graphene oxide/chitosan composite aerogel microspheres. Gels 2024, 10, 81. [Google Scholar] [CrossRef]
- de Oliveira Brito, S.M.; Andrade, H.M.C.; Soares, L.F.; de Azevedo, R.P. Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. J. Hazard. Mater. 2010, 174, 84–92. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Ahmad, M.; Al-Swadi, H.A.; Ahmad, J.; Abdin, Y.; Usman, A.R.; Al-Farraj, A.S. Sorption–desorption behavior of doxycycline in soil–manure systems amended with mesquite wood waste biochar. Plants 2021, 10, 2566. [Google Scholar] [CrossRef]
- Elhory, S.H.; Elamin, M.R.; Ibrahim, T.G.; Salih, M.; Algethami, F.K.; Eltoum, M.S.; Abdulkhair, B.Y. A γ-Al2O3 and MgO/MgAl2O4 Fabricated via a Facile Pathway as Excellent Dye Eliminators from Water. Inorganics 2025, 13, 284. [Google Scholar] [CrossRef]
- Almufarij, R.S.; Abdulkhair, B.Y.; Salih, M. Fast-simplistic fabrication of MoO3@Al2O3-MgO triple nanocomposites for efficient elimination of pharmaceutical contaminants. Results Chem. 2024, 7, 101281. [Google Scholar] [CrossRef]
Latice Parameters | ||||||
Sorbent | D (nm) | a (Ǻ) | c (Ǻ) | ε (a.u) | ||
MOA | 2.78 | 0.0432 | 0.395 | 0.0089 | ||
10Cu@MOA | 2.77 | 0.0434 | 0.396 | 0.0084 | ||
10Ni@MOA | 4.05 | 0.0435 | 0.393 | 0.0090 | ||
10Co@MOA | 5.63 | 0.0435 | 0.395 | 0.0059 | ||
The Surface Characteristics | ||||||
Sorbent | SA (m2·g−1) | PD (Ǻ) | PV (cm3·g−1) | |||
MOA | 84.37 | 146.06 | 0.30 | |||
10Cu@MOA | 141.84 | 186.54 | 0.43 | |||
10Ni@MOA | 126.65 | 166.56 | 0.38 | |||
10Co@MOA | 105.29 | 159.91 | 0.38 |
Adsorption Rate Order | |||||||||||||||
Sorbent | qmax exp (mg·g−1) | PSFO | PSSO | ||||||||||||
qe (mg·g−1) | K1 | R2 | χ2 | RSS | qe (mg·g−1) | K2 | R2 | χ2 | RSS | ||||||
MOA | 57.260 | 51.029 | 0.322 | 0.906 | 34.011 | 238.078 | 54.895 | 0.4760 | 0.964 | 13.008 | 91.059 | ||||
10Cu@MOA | 106.130 | 92.428 | 0.370 | 0.874 | 153.205 | 1072.434 | 99.784 | 0.5157 | 0.941 | 71.765 | 502.360 | ||||
10Ni@MOA | 97.660 | 84.786 | 0.264 | 0.836 | 172.056 | 1204.389 | 92.377 | 0.372 | 0.918 | 85.817 | 600.720 | ||||
10Co@MOA | 73.870 | 66.916 | 0.603 | 0.937 | 37.414 | 261.895 | 70.560 | 0.966 | 0.976 | 14.399 | 100.790 | ||||
Adsorption Rate Mechanism | |||||||||||||||
Sorbent | IPDM | LFDM | |||||||||||||
KIP (mg·g−1 min1/2) | Ci (mg·g−1) | R2 | KLF (min–1) | R2 | |||||||||||
MOA | 3.239 | 30.007 | 0.943 | 0.059 | 0.973 | ||||||||||
10Cu@MOA | 5.993 | 54.863 | 0.968 | 0.071 | 0.938 | ||||||||||
10Ni@MOA | 6.261 | 44.0462 | 0.962 | 0.064 | 0.954 | ||||||||||
10Co@MOA | 2.945 | 49.097 | 0.943 | 0.060 | 0.973 |
Isotherms | ||||||||
Isotherm Model | LAIM | FRIM | ||||||
Temperature | R2 | KL | qm | RSS | R2 | Kf | 1/n | RSS |
20 °C | 0.95906 | 0.0441 | 659.504 | 3136.355 | 0.95405 | 52.6249 | 0.586 | 1677.860 |
50 °C | 0.96296 | 2.9312 | 421.513 | 3593.350 | 0.98406 | 281.595 | 0.296 | 764.1687 |
Thermodynamic | ||||||||
Conc. (mg·L−1) | ΔH° | ΔS° | ΔG° (293 K) | ΔG°-303 K | ΔG°-313 K | ΔG°-323 K | R2 | |
50 | 178.201 | 0.590 | 2.317 | −3.585 | −9.487 | −15.389 | 0.776 | |
100 | 141.174 | 0.474 | −0.093 | −4.833 | −9.573 | −14.314 | 0.838 | |
150 | 103.444 | 0.352 | −1.548 | −5.072 | −8.595 | −12.118 | 0.863 | |
200 | 79.122 | 0.273 | −2.299 | −5.032 | −7.764 | −10.496 | 0.963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, M.; Ibrahim, T.G.; Ramadan, R.S.; Alarifi, N.; Abdulkhair, B.Y. Fabrication of Spinel Magnesium Aluminate Doped with Divalent-First-Row Transition-Metal Oxides as Efficient Sorbents for Pharmaceutical Contaminants. Processes 2025, 13, 3095. https://doi.org/10.3390/pr13103095
Salih M, Ibrahim TG, Ramadan RS, Alarifi N, Abdulkhair BY. Fabrication of Spinel Magnesium Aluminate Doped with Divalent-First-Row Transition-Metal Oxides as Efficient Sorbents for Pharmaceutical Contaminants. Processes. 2025; 13(10):3095. https://doi.org/10.3390/pr13103095
Chicago/Turabian StyleSalih, Mutaz, Tarig G. Ibrahim, Rasha S. Ramadan, Naif Alarifi, and Babiker Y. Abdulkhair. 2025. "Fabrication of Spinel Magnesium Aluminate Doped with Divalent-First-Row Transition-Metal Oxides as Efficient Sorbents for Pharmaceutical Contaminants" Processes 13, no. 10: 3095. https://doi.org/10.3390/pr13103095
APA StyleSalih, M., Ibrahim, T. G., Ramadan, R. S., Alarifi, N., & Abdulkhair, B. Y. (2025). Fabrication of Spinel Magnesium Aluminate Doped with Divalent-First-Row Transition-Metal Oxides as Efficient Sorbents for Pharmaceutical Contaminants. Processes, 13(10), 3095. https://doi.org/10.3390/pr13103095