Formation of η-Carbides by Mechanical Alloying of Co25Mo25C50 and Their Performance in Hydrodesulfurization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Powder Preparation and Mechanical Alloying
- M1: horizontal milling at 400 rpm for 26 h with no added vibration.
- M2: same base conditions (400 rpm, 26 h) with the added vertical vibration described above (velocity amplitude 13.2 mm from the 0.7 mm axis offset).
2.3. X-Ray Diffraction (Phase Analysis)
2.4. Electron Microscopy
2.5. Aquathermolysis Experiments and ATR-FTIR
3. Results and Discussion
3.1. X-Ray Diffraction
3.2. Scanning Electron Microscopy (SEM)
3.3. High Resolution Transmission Electron Microscopy (HRTEM)
3.4. Fourier Transform Infrared Spectroscopy (FTIR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šaponjić, A.; Šaponjić, D.; Perović, I.; Vuković, M.; Vladi, S. Synthesis and characterization of Co–Mo bimetallic carbides. Sci. Sinter. 2019, 51, 319–326. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Y.; Zhang, H.; Chang, N.; Li, L.; Xie, K.; Mochida, I. Effect of initial Si/Al ratios on the performance of low crystallinity Hβ-x zeolite supported NiMo carbide catalysts for aromatics hydrogenation. Catal. Sci. Technol. 2019, 9, 5031–5044. [Google Scholar] [CrossRef]
- AlShibane, I.; Daisley, A.; Hargreaves, J.S.J.; Hector, A.L.; Laassiri, S.; Rico, J.L.; Smith, R.I. The role of composition for cobalt molybdenum carbide in ammonia synthesis. ACS Sustain. Chem. Eng. 2017, 5, 9214–9222. [Google Scholar] [CrossRef]
- AlShibane, I.; Laassiri, S.; Rico, J.L.; Hargreaves, J.S.J. Methane cracking over cobalt molybdenum carbides. Catal. Lett. 2018, 148, 1643–1650. [Google Scholar] [CrossRef]
- Blin, T.; Girard, A.; Fossard, F.; Guillou, N.; Catala, L.; Loiseau, A.; Huc, V. η-Carbides (Co, Mo, or W) nanoparticles from octacyanometalates precursors-based network. Small 2023, 19, 2301299. [Google Scholar] [CrossRef]
- Society of Petroleum Engineers (SPE). Challenges in Processing and Transporting Heavy Crude Oil. Available online: https://jpt.spe.org/challenges-processing-and-transporting-heavy-crude (accessed on 27 August 2025).
- Furimsky, E. Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl. Catal. A Gen. 2003, 240, 1–28. [Google Scholar] [CrossRef]
- Nickel–Molybdenum Catalysts for Hydrodesulfurization Treating of Heavy Crude Fractions. Energy Technology Data Exchange (ETDE); Office of Scientific and Technical Information (OSTI): France, 1980 (April); Abstract Collection 1522. Available online: https://www.osti.gov/etdeweb/biblio/6227594 (accessed on 27 August 2025).
- Hsu, C.S.; Robinson, P.R. (Eds.) Practical Advances in Petroleum Processing; Springer: New York, NY, USA, 2006; Volume 1, ISBN 978-0-387-25811-9. [Google Scholar] [CrossRef]
- Speight, J.G. Handbook of Petroleum Refining; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Speight, J.G. The Chemistry and Technology of Petroleum, 4th ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Oil and Gas Training Center. Classification of Crude Oil Based on API Gravity. 2021. Available online: https://oilandgascourses.org/classification-of-crude-oil-based-on-api-gravity/ (accessed on 27 August 2025).
- Almao, P.P. In situ upgrading of bitumen and heavy oils via nanocatalysis. Can. J. Chem. Eng. 2012, 90, 320–329. [Google Scholar] [CrossRef]
- National Hydrocarbons Commission (CNH). Annual Report 2023; Mexico City, Mexico. 2023. Available online: https://www.cnh.gob.mx/estadisticas/informe-anual-2023 (accessed on 27 August 2025).
- Petróleos Mexicanos (PEMEX). Maya Crude Oil—Features. 2025. Available online: https://www.pemex.com/en/commercialization/products/Paginas/oil/maya-crude.aspx (accessed on 27 August 2025).
- Alagorni, A.H.; Yaacob, Z.B.; Nour, A.H. An overview of oil production stages: Enhanced oil recovery techniques and nitrogen injection. Int. J. Environ. Sci. Dev. 2015, 6, 693–701. [Google Scholar] [CrossRef]
- Areej, N.A.; Wasan, S.A.; Sufiyan, M.M. An overview of oil recovery techniques: From primary to enhanced oil recovery methods. J. Res. Appl. Basic Sci. 2023, 3, 392–399. [Google Scholar] [CrossRef]
- Kalita, P.; Sharma, V.; Pandey, L.; Tiwari, P. Secondary and tertiary oil recovery processes. In Green Energy and Technology; Springer: Singapore, 2022; pp. 49–72. [Google Scholar] [CrossRef]
- Koninckx, E.; Colin, J.G.; Broadbelt, L.J.; Vernuccio, S. Catalytic conversion of alkenes on acidic zeolites: Automated generation of reaction mechanisms and lumping technique. ACS Eng. Au 2022, 2, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Tanimu, A.; Alhooshani, K. Advanced hydrodesulfurization catalysts: A review of design and synthesis. Energy Fuels 2019, 33, 2810–2838. [Google Scholar] [CrossRef]
- Arora, S.; Singh, R.; Khan, R.; Kunzru, D.; Sivakumar, S. Challenges and opportunities to design a highly active hydrodesulfurization catalyst: A comprehensive review. Mol. Catal. 2025, 583, 115220. [Google Scholar] [CrossRef]
- Rivera Olvera, J.N.; Gutiérrez, G.J.; Romero Serrano, J.A.; Medina Ovando, A.; Garibay Febles, V.; Díaz Barriga Arceo, L. Use of unsupported, mechanically alloyed NiWMoC nanocatalyst to reduce the viscosity of aquathermolysis reaction of heavy oil. Catal. Commun. 2014, 43, 131–135. [Google Scholar] [CrossRef]
- Dipheko, T.D.; Maximov, V.V.; Osman, M.E.; Eliseev, O.L.; Cherednichenko, A.G.; Sheshko, T.F.; Kogan, V.M. Synthesis of oxygenated hydrocarbons from ethanol over sulfided KCoMo-based catalysts: Influence of novel fiber- and powder-activated carbon supports. Catalysts 2022, 12, 1497. [Google Scholar] [CrossRef]
- Storozhenko, V.N.; Kamyshnikova, A.S.; Pashchenko, K.P.; Okhlobystin, A.O.; Eremenko, I.L.; Berberova, N.T. Transition metal (Zn(II), Co(II), Cu(II), Ni(II)) complexes for the removal of acidic sulfur impurities from hydrocarbon fuel. Russ. J. Coord. Chem. 2023, 49, S97–S127. [Google Scholar] [CrossRef]
- Hajjar, Z.; Kazemeini, M.; Rashidi, A.; Bazmi, M. Graphene based catalysts for deep hydrodesulfurization of naphtha and diesel fuels: A physiochemical study. Fuel 2016, 165, 468–476. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Chen, Y.; Li, W.; Yang, K.; Liang, C. Non-metal doping Ni@C as highly efficient and stable hydrodesulfurization catalysts for clean liquid fuels. Mol. Catal. 2022, 528, 112440. [Google Scholar] [CrossRef]
- Vinogradov, N.A.; Timoshkina, V.V.; Tsilimbaeva, E.A.; Zasypalov, G.O.; Pimerzin, A.A.; Glotov, A.P. CoPMoV sulfide catalysts supported on natural halloysite nanotubes in hydrotreating of dibenzothiophene and naphthalene. Pet. Chem. 2023, 63, 524–533. [Google Scholar] [CrossRef]
- Bharech, S.; Kumar, R. A review on the properties and applications of graphene. J. Mater. Sci. Mech. Eng. 2015, 2, 70–73. [Google Scholar]
- Nguyen Bich, H.; Nguyen Van, H. Promising applications of graphene and graphene-based nanostructures. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 023002. [Google Scholar] [CrossRef]
- Al-Daous, M.A. Graphene–MoS2 composite: Hydrothermal synthesis and catalytic property in hydrodesulfurization of dibenzothiophene. Catal. Commun. 2015, 72, 180–184. [Google Scholar] [CrossRef]
- Wang, X.; Xu, W.; Liu, N.; Yu, Z.; Li, Y.; Qiu, J. Synthesis of metallic Ni–Co/graphene catalysts with enhanced hydrodesulfurization activity via a low-temperature plasma approach. Catal. Today 2015, 256, 203–208. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, B.; Cheng, X.; Wang, C.; Zhao, L.; Zhu, Y.; Zhu, J.; Lu, X. NiMo catalysts supported on graphene-modified mesoporous TiO2 toward highly efficient hydrodesulfurization of dibenzothiophene. Appl. Catal. A Gen. 2015, 502, 157–165. [Google Scholar] [CrossRef]
- Leonard, J.R.; Hu, L.; High, A.A.; Hammack, A.T.; Wu, C.; Butov, L.V.; Campman, K.L.; Gossard, A.C. Moiré pattern of interference dislocations in condensate of indirect excitons. Nat. Commun. 2021, 12, 1175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Y.; Li, X.; Gao, R.; Sun, J.; Liu, J.; Yao, S. NiMo/C-HY catalyst prepared from doping zeolite slurry in a superabsorbent polymer for DBT and 4,6-DMDBT hydrodesulfurization. Microporous Mesoporous Mater. 2023, 347, 112349. [Google Scholar] [CrossRef]
- Hubbard, C.R. RIR—Measurement and use in quantitative XRD. Powder Diffr. 1988, 3, 74–77. [Google Scholar] [CrossRef]
- International Centre for Diffraction Data (ICDD). Quantitative Analysis: Reference Intensity Ratio (RIR); ICDD: Newtown Square, PA, USA, 2011; Available online: https://www.icdd.com/assets/tutorials/Quantitative-Analysis-RIR.pdf (accessed on 28 August 2025).
- Materials Project. Materials Project (Next-Gen) Portal. Available online: https://next-gen.materialsproject.org (accessed on 28 August 2025).
- Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Díaz Barriga Arceo, L.G.; González Reyes, L.; Rivera Olvera, J.N.; Medina Ovando, A.; Garibay Febles, V. Intercalated intermetallic compounds AlTi3 and Fe2Ti in microrods and microtubes obtained by invariant reaction of mechanically milled system Al43Ti36Fe21. Materials 2019, 12, 3806. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra: A practical approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2000. [Google Scholar] [CrossRef]
- Larkin, P.J. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0128041628. [Google Scholar]
Phase | Lattice Parameters | Crystal System | Space Group | Phase Fraction (wt%) |
---|---|---|---|---|
C | a = 5.077 Å b = 6.727 Å c = 4.516 Å | Orthorhombic P | Pnma (62) | 15.00 |
C | a = 11.072 Å | Cubic F | (227) | 61.66 |
a = 9.228 Å c = 4.826 Å | Tetragonal P | (136) | 8.58 | |
C | a = 10.902 Å | Cubic F | (227) | 14.76 |
Phase | Lattice Parameters | Crystal System | Space Group | Phase Fraction (wt%) |
---|---|---|---|---|
C | a = 11.072 Å | Cubic F | (227) | 15.72 |
C | a = 10.902 Å | Cubic F | (227) | 62.28 |
a = 9.228 Å c = 4.826 Å | Tetragonal P | (136) | 11.10 | |
a = 4.762 Å c = 25.617 Å | Rhombohedral (hexagonal setting) | (166) | 10.86 |
Wavenumber () | Functional Group/Assignment | Mode |
---|---|---|
500–470 | Polysulfides | S–S stretch |
500–430 | Aryl disulfides | S–S stretch |
620–600 | Disulfides | S–S stretch |
705–570 | Disulfides | C–S stretch |
660–630 | Thioethers (e.g., –S–) | C–S stretch |
Wavenumber () | Reduction (%) | Assignment | Mode |
---|---|---|---|
629 | 6.61 | Disulfides | S–S stretch |
651 | 6.24 | Thioethers (–S–) | C–S stretch |
700 | 6.34 | Disulfides | C–S stretch |
Wavenumber () | Reduction (%) | Assignment | Mode |
---|---|---|---|
629 | 7.01 | Disulfides | S–S stretch |
651 | 7.21 | Thioethers (–S–) | C–S stretch |
700 | 6.81 | Disulfides | C–S stretch |
Wavenumber () | Reduction (%) | Assignment | Mode |
---|---|---|---|
629 | 6.55 | Disulfides | S–S stretch |
651 | 6.29 | Thioethers (–S–) | C–S stretch |
700 | 6.45 | Disulfides | C–S stretch |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Caudillo, B.E.; Carvajal-Mariscal, I.; Reyes de la Torre, A.I.; Rivera Olvera, J.N.; Garibay Febles, V.; González Reyes, L.; Díaz Barriga Arceo, L.G. Formation of η-Carbides by Mechanical Alloying of Co25Mo25C50 and Their Performance in Hydrodesulfurization. Processes 2025, 13, 3080. https://doi.org/10.3390/pr13103080
García Caudillo BE, Carvajal-Mariscal I, Reyes de la Torre AI, Rivera Olvera JN, Garibay Febles V, González Reyes L, Díaz Barriga Arceo LG. Formation of η-Carbides by Mechanical Alloying of Co25Mo25C50 and Their Performance in Hydrodesulfurization. Processes. 2025; 13(10):3080. https://doi.org/10.3390/pr13103080
Chicago/Turabian StyleGarcía Caudillo, Brenda Edith, Ignacio Carvajal-Mariscal, Adriana Isabel Reyes de la Torre, Jesús Noé Rivera Olvera, Vicente Garibay Febles, Leonardo González Reyes, and Lucía Graciela Díaz Barriga Arceo. 2025. "Formation of η-Carbides by Mechanical Alloying of Co25Mo25C50 and Their Performance in Hydrodesulfurization" Processes 13, no. 10: 3080. https://doi.org/10.3390/pr13103080
APA StyleGarcía Caudillo, B. E., Carvajal-Mariscal, I., Reyes de la Torre, A. I., Rivera Olvera, J. N., Garibay Febles, V., González Reyes, L., & Díaz Barriga Arceo, L. G. (2025). Formation of η-Carbides by Mechanical Alloying of Co25Mo25C50 and Their Performance in Hydrodesulfurization. Processes, 13(10), 3080. https://doi.org/10.3390/pr13103080