Pore Structure and Fractal Characteristics of Kelasu Ultra-Deep Tight Sandstone Gas Reservoirs
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Porosity and Permeability Measurement
2.2.2. TS and SEM Measurement
2.2.3. HPMI and LPNA Measurement
3. Results
3.1. Porosity, Permeability, and Full-Scale Pore Size Distribution
3.2. Microscopic Characteristics of Pore Structure
3.3. Fractal Characteristics of Multiscale Pore Structure
3.3.1. Pore Scale Larger than 100 nm
3.3.2. Pore Scale Lower than 100 nm
4. Discussion
4.1. Comparison of Porosity and Permeability Between Laboratory Normal and In Situ Conditions for Ultra-Deep Tight Sandstone
4.2. Pore Structure Characteristics of Ultra-Deep Tight Sandstone
5. Conclusions
- (1)
- The porosity of the sample at 3 MPa and 25 °C was 1.02 to 1.12 times (1.08 times on average) higher than in situ temperature and pressure conditions, and the permeability was 4.30 to 54.34 times higher (25.30 times on average).
- (2)
- Due to intense compaction and cementation effects, the samples from the ultra-deep tight sandstone gas reservoirs exhibit underdeveloped pore systems. The pore structure types primarily include intergranular pores, intragranular pores, grain-edge fractures, microfractures, and clay mineral intercrystalline pores.
- (3)
- The pore volume of the ultra-deep tight sandstone with D < 100 nm is mainly mesoporous, with an average of 73.37%. The average proportions of macropores and micropores are 22.29% and 4.34%, respectively.
- (4)
- The capillary pressure curves exhibit steep slopes with narrow plateaus, indicating poorly sorted pore-throat size distributions and skewed toward smaller dimensions. There is a steep drop in the middle of the capillary pressure curve, indicating low mercury removal efficiency and poor connectivity.
- (5)
- The full pore size distribution curve shows a bimodal pattern, with the left peak concentrated in the range of 100–1000 nm (34.92% proportion on average), and the right peak concentrated in D > 100 μm (accounting for 25.26% on average). These primary storage spaces lack effective connectivity. To improve connectivity, appropriate acid fracturing can be carried out.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
D | Pore diameter, nm |
Spearman’s rank correlation coefficient | |
p | Probability value |
ϕ1 | Porosity measured under 25 °C and 3 MPa effective stress conditions, % |
ϕ2 | In situ porosity, % |
k1 | Permeability measured under 25 °C and 3 MPa effective stress conditions, mD |
k2 | In situ permeability, mD |
r | Pore radius, nm |
Number of pores with aperture radius greater than r | |
n | The quantity of samples |
Fractal dimension | |
Volume of mercury intruded into the core, cm3 | |
Core length, cm | |
Capillary pressure, MPa | |
Surface tension, mN/m | |
Contact angle, ° | |
Mercury saturation, % | |
Pore volume, cm3 | |
Slope of the fitted line | |
Fractal Dimension of Type I Fractal Pore Structure | |
Fractal Dimension of Type II Fractal Pore Structure | |
Fractal Dimension of Type III Fractal Pore Structure | |
Fractal Dimension of Type IV Fractal Pore Structure | |
Adsorption Volume, cm3/g | |
Saturated Vapor Pressure of Gas, Pa | |
Actual Gas Pressure, Pa | |
Constant |
References
- Yue, D.; Wu, S.; Xu, Z.; Xiong, L.; Chen, D.; Ji, Y.; Zhou, Y. Reservoir quality, natural fractures, and gas productivity of upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China. Mar. Pet. Geol. 2018, 89, 370–386. [Google Scholar] [CrossRef]
- Jia, C.; Pan, X. Research processes and main development directions of deep hydrocarbon geological theories. Acta Pet. Sin. 2015, 36, 1457–1469. [Google Scholar] [CrossRef]
- Lei, Q.; Yang, Z.; Weng, D.; Liu, H.; Guan, B.; Cai, B.; Fu, H.; Liu, Z.; Duan, Y.; Liang, T.; et al. Techniques for improving fracture-controlled stimulated reservoir volume in ultra-deep fractured tight reservoirs: A case study of Kuqa piedmont clastic reservoirs, Tarim Basin, NW China. Acta Pet. Sin. 2022, 49, 1012–1024. [Google Scholar] [CrossRef]
- Jacob, A.; Peltz, M.; Hale, S.; Enzmann, F.; Moravcova, O.; Warr, L.N.; Grathoff, G.; Blum, P.; Kersten, M. Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging. Solid Earth 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Zhang, K.; Tian, F.; Zhang, Y.; Zhang, R.; Xu, C.; Liu, F.; Liu, X.; Wang, X.; et al. Method for calculating porosity in tight sandstone reservoir thin sections based on ICSO intelligent algorithm. Unconv. Resour. 2025, 6, 100147. [Google Scholar] [CrossRef]
- He, T.; Zhou, Y.; Chen, Z.; Zhang, Z.; Xie, H.; Shang, Y.; Cui, G. Fractal Characterization of the Pore-Throat Structure in Tight Sandstone Based on Low-Temperature Nitrogen Gas Adsorption and High-Pressure Mercury Injection. Fractal Fract. 2024, 8, 356. [Google Scholar] [CrossRef]
- Li, Z.; Ren, Y.; Chang, R.; Zhang, Y.; Zhang, X.; Tian, W. Clarifying the contribution of multiscale pores to physical properties of Chang 7 tight sandstones: Insight from full-scale pore structure and fractal characteristics. Front. Earth Sci. 2024, 12, 1361052. [Google Scholar] [CrossRef]
- Huyan, Y.Y.; Pang, X.Q.; Liu, T.S.; Jiang, F.J.; Chen, X.Z.; Ma, X.Q.; Li, L.L.; Shao, X.H.; Zheng, D.Y. Petrophysical characterisation of tight sandstone gas reservoirs using nuclear magnetic resonance: A case study of the upper Paleozoic strata in the Kangning area, eastern margin of the Ordos Basin, China. Aust. J. Earth Sci. 2018, 65, 863–875. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Song, Y.; Zhao, Y.; Zhao, J.; Wang, D. Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging. J. Appl. Geophys. 2012, 86, 70–81. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, R.; Li, Z.; Qiu, L.; Zhao, J.; Shou, Q.; Liu, J. Quantitative Characterization of Microscopic Pore Structure of Tight Sandstone Gas Reservoirs Based on Micron CT Scanning. Chem. Technol. Fuels Oils 2025, 61, 408–417. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wei, Q.; Sun, K.; Zhang, G.; Wang, F. Characterization of Full-Sized Pore Structure and Fractal Characteristics of Marine–Continental Transitional Longtan Formation Shale of Sichuan Basin, South China. Energy Fuels 2017, 31, 10490–10504. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, S.; Xiao, D.; Gu, M. Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites. J. Nat. Gas Sci. Eng. 2017, 38, 434–449. [Google Scholar] [CrossRef]
- Tian, W.; Lu, S.; Huang, W.; Wang, S.; Gao, Y.; Wang, W.; Li, J.; Xu, J.; Zhan, Z. Study on the Full-Range Pore Size Distribution and the Movable Oil Distribution in Glutenite. Energy Fuels 2019, 33, 7028–7042. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Yuan, H.; Zhang, D.; Agostini, F.; Skoczylas, F. Pore structure characterization of tight sandstone from Sbaa Basin, Algeria: Investigations using multiple fluid invasion methods. J. Nat. Gas Sci. Eng. 2018, 59, 414–426. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Passoja, D.E.; Paullay, A.J. Fractal character of fracture surfaces of metals. Nature 1984, 308, 721–722. [Google Scholar] [CrossRef]
- Giri, A.; Tarafdar, S.; Gouze, P.; Dutta, T. Fractal pore structure of sedimentary rocks: Simulation in 2-d using a relaxed bidisperse ballistic deposition model. J. Appl. Geophys. 2012, 87, 40–45. [Google Scholar] [CrossRef]
- Li, P.; Zheng, M.; Bi, H.; Wu, S.; Wang, X. Pore throat structure and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China. J. Pet. Sci. Eng. 2017, 149, 665–674. [Google Scholar] [CrossRef]
- Liu, X.; Nie, B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption. Fuel 2016, 182, 314–322. [Google Scholar] [CrossRef]
- Wang, F.; Yang, K.; Zai, Y. Multifractal characteristics of shale and tight sandstone pore structures with nitrogen adsorption and nuclear magnetic resonance. Pet. Sci. 2020, 17, 1209–1220. [Google Scholar] [CrossRef]
- Li, K. Analytical derivation of Brooks–Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity. J. Pet. Sci. Eng. 2010, 73, 20–26. [Google Scholar] [CrossRef]
- He, H.; Liu, P.; Xu, L.; Hao, S.; Qiu, X.; Shan, C.; Zhou, Y. Pore structure representations based on nitrogen adsorption experiments and an FHH fractal model: Case study of the block Z shales in the Ordos Basin, China. J. Pet. Sci. Eng. 2021, 203, 108661. [Google Scholar] [CrossRef]
- Cao, L.; Jiang, F.; Chen, Z.; Gao, Y.; Huo, L.; Chen, D. Data-driven interpretable machine learning for prediction of porosity and permeability of tight sandstone reservoir. Adv. Geo-Energy Res. 2025, 16, 21–35. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, S.; Wang, H.; Wang, Y. A Method for Predicting Gas Well Productivity in Non-Dominant Multi-Layer Tight Sandstone Reservoirs of the Sulige Gas Field Based on Multi-Task Learning. Processes 2025, 13, 2666. [Google Scholar] [CrossRef]
- Yu, S.; Wang, C.; Chen, D.; Guo, B.; Cai, Z.; Xu, Z. Criteria and favorable distribution area prediction of Paleogene effective sandstone reservoirs in the Lufeng Sag, Pearl River Mouth Basin. Adv. Geo-Energy Res. 2022, 6, 388–401. [Google Scholar] [CrossRef]
- Yao, Z.; Fu, T.; Wang, J.; Zhang, X.; Jia, C.; Wei, W.; Deleqiatì, J.; Yu, H.; Li, J.; Wang, H. Diagenetic facies and pore evolution of tight sandstone reservoirs of the Jiamuhe formation in the Shawan sag, Junggar basin. Sci. Rep. 2025, 15, 22460. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Dollimore, D.; Spooner, P.; Turner, A.J.S.T. The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf. Technol. 1976, 4, 121–160. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Xiao, Q.; Yang, Z.; Wang, Z.; Qi, Z.; Wang, X.; Xiong, S. A full-scale characterization method and application for pore-throat radius distribution in tight oil reservoirs. J. Pet. Sci. Eng. 2020, 187, 106857. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, S.; Xiao, D.; Li, B. Pore structure characteristics of tight sandstones in the northern Songliao Basin, China. Mar. Pet. Geol. 2017, 88, 170–180. [Google Scholar] [CrossRef]
- Pfeifer, P.; Avnir, D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 1983, 79, 3558–3565. [Google Scholar] [CrossRef]
- Lai, Z.; Kang, Y.; Chen, M.; Huang, H.; You, L.; Bai, J. Selective dissolution of tight sandstone in an acidic environment to enhance gas flow capacity. Geoenergy Sci. Eng. 2024, 237, 212814. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Liu, Y.; Zhong, C. Influencing Factors and Application of Spontaneous Imbibition of Fracturing Fluids in Tight Sandstone Gas Reservoir. ACS Omega 2022, 7, 38912–38922. [Google Scholar] [CrossRef] [PubMed]
ID | Depth (m) | Length (mm) | Diameter (mm) | Mass (g) |
---|---|---|---|---|
BZ-1 | 5838.1 | 30.8 | 25.5 | 40.08 |
BZ-2 | 5847.3 | 32.8 | 25.5 | 40.55 |
BZ-3 | 5852.5 | 28.4 | 25.6 | 36.90 |
KS-1 | 6704.9 | 36.1 | 25.2 | 44.89 |
KS-2 | 6705.4 | 35.2 | 25.2 | 46.18 |
KS-3 | 6705.8 | 28.0 | 25.4 | 36.06 |
DB-1 | 6956.5 | 40.2 | 25.5 | 51.09 |
DB-2 | 6957.2 | 30.5 | 25.5 | 38.14 |
DB-3 | 6957.5 | 38.4 | 25.5 | 48.07 |
ID | 25 °C, 3 MPa | In Situ Conditions | ||
---|---|---|---|---|
Porosity (ϕ1, %) | Permeability (k1, mD) | Porosity (ϕ2, %) | Permeability (k2, mD) | |
BZ-1 | 3.14 | 0.0188 | 2.85 | 0.000346 |
BZ-2 | 5.76 | 0.0119 | 5.38 | 0.002770 |
BZ-3 | 4.34 | 0.0229 | 3.98 | 0.001040 |
KS-1 | 6.53 | 0.0218 | 6.39 | 0.004167 |
KS-2 | 3.12 | 0.0292 | 2.81 | 0.001809 |
KS-3 | 5.20 | 0.0203 | 4.68 | 0.000763 |
DB-1 | 2.86 | 0.0115 | 2.70 | 0.000257 |
DB-2 | 2.95 | 0.0113 | 2.81 | 0.000750 |
DB-3 | 2.46 | 0.0209 | 2.20 | 0.000532 |
Average value | 4.04 | 0.0187 | 3.76 | 0.001382 |
ID | Micropore (D < 2 nm) | Mesopore (2 nm < D < 50 nm) | Macropore (50 nm < D < 100 nm) |
---|---|---|---|
BZ-1 | 9.21% | 79.73% | 10.70% |
BZ-2 | 2.91% | 69.08% | 26.49% |
BZ-3 | 3.74% | 68.09% | 20.27% |
KS-1 | 1.03% | 80.09% | 27.58% |
KS-2 | 5.87% | 70.60% | 19.45% |
KS-3 | 3.82% | 75.99% | 27.13% |
DB-1 | 1.48% | 74.98% | 18.80% |
DB-2 | 5.63% | 71.39% | 25.29% |
DB-3 | 5.79% | 74.68% | 26.12% |
Average value | 4.39% | 73.85% | 22.43% |
ID | (I) | (II) | (III) | (IV) |
---|---|---|---|---|
BZ-1 | 2.81 | 2.21 | 2.27 | 2.72 |
BZ-2 | 2.90 | 2.18 | 2.57 | 2.59 |
BZ-3 | 2.64 | 2.15 | 2.39 | 2.61 |
KS-1 | 2.49 | 2.09 | 2.53 | 2.56 |
KS-2 | 2.45 | 2.06 | 2.14 | 2.55 |
KS-3 | 2.73 | 2.05 | 2.72 | 2.55 |
DB-1 | 2.64 | 2.06 | 2.18 | 2.58 |
DB-2 | 2.68 | 2.07 | 2.33 | 2.53 |
DB-3 | 2.49 | 2.06 | 2.13 | 2.56 |
Average value | 2.65 | 2.10 | 2.36 | 2.58 |
ID | ϕ1/ϕ2 | k1/k2 | (ϕ1 − ϕ2)/ϕ1 | (k1 − k2)/k1 |
---|---|---|---|---|
BZ-1 | 54.34 | 1.10 | 98.16% | 9.09% |
BZ-2 | 4.30 | 1.07 | 76.72% | 6.54% |
BZ-3 | 22.02 | 1.09 | 95.46% | 8.26% |
KS-1 | 5.23 | 1.02 | 80.89% | 2.13% |
KS-2 | 16.14 | 1.11 | 93.80% | 9.91% |
KS-3 | 26.61 | 1.11 | 96.24% | 9.91% |
DB-1 | 44.73 | 1.06 | 97.76% | 5.66% |
DB-2 | 15.06 | 1.05 | 93.36% | 4.76% |
DB-3 | 39.32 | 1.12 | 97.46% | 10.71% |
Average value | 25.30 | 1.08 | 92.63% | 7.01% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Zhang, Y.; Tang, X.; Zhang, Q.; Chen, M.; Pei, X.; Kang, Y.; Zhang, Y.; Liu, Y.; Zhou, B.; et al. Pore Structure and Fractal Characteristics of Kelasu Ultra-Deep Tight Sandstone Gas Reservoirs. Processes 2025, 13, 3074. https://doi.org/10.3390/pr13103074
Tang L, Zhang Y, Tang X, Zhang Q, Chen M, Pei X, Kang Y, Zhang Y, Liu Y, Zhou B, et al. Pore Structure and Fractal Characteristics of Kelasu Ultra-Deep Tight Sandstone Gas Reservoirs. Processes. 2025; 13(10):3074. https://doi.org/10.3390/pr13103074
Chicago/Turabian StyleTang, Liandong, Yongbin Zhang, Xingyu Tang, Qihui Zhang, Mingjun Chen, Xuehao Pei, Yili Kang, Yiguo Zhang, Yuting Liu, Bihui Zhou, and et al. 2025. "Pore Structure and Fractal Characteristics of Kelasu Ultra-Deep Tight Sandstone Gas Reservoirs" Processes 13, no. 10: 3074. https://doi.org/10.3390/pr13103074
APA StyleTang, L., Zhang, Y., Tang, X., Zhang, Q., Chen, M., Pei, X., Kang, Y., Zhang, Y., Liu, Y., Zhou, B., Li, J., Tian, P., & Wu, D. (2025). Pore Structure and Fractal Characteristics of Kelasu Ultra-Deep Tight Sandstone Gas Reservoirs. Processes, 13(10), 3074. https://doi.org/10.3390/pr13103074