Assessing the Physiochemical and Sensorial Quality of Pea Sauce Canned in Plastic Trays vs. Metal Cans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Packaging Plastic Tray Properties
2.1.1. Composition of Plastic Packaging for Canned Food
2.1.2. Characterization of the Plastic Packaging Tray for Canned Food
2.1.3. Global and Specific Migration
2.2. Pea Sauce Preparation and Canning Process
2.3. Sterilization Scale Validation
2.4. Optimizing the Packaging Parameters of the Plastic Trays
2.5. Quality of the Canned Pea Sauce
2.5.1. Stability Test
2.5.2. Physicochemical Analysis
2.5.3. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Packaging Plastic Tray Composition
3.2. Oxygen and Water Vapor Permeability
3.3. Global and Specific Migration
3.4. Sterilization Scale Validation
3.4.1. Determination of VS
3.4.2. Optimizing the Sterilization Pressure and Vacuum Level to Prevent Package Deformation for Plastic Trays
3.5. Effect of Packaging and Storage on Pea Sauce Quality
3.5.1. Stability Test of Canned Pea Sauce within Two Packages
3.5.2. Effect on pH
3.5.3. Effect on Total Volatile Basic Nitrogen
3.5.4. Effect on Color Measurement
3.6. Effect of Packaging Type on Sensorial Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alamri, M.; Qasem, A.A.; Mohamed, A.A.; Hussain, S.; Ibraheem, M.A.; Shamlan, G.; Alqah, H.A.; Qasha, A.S. Food packaging’s materials: A food safety perspective. Saudi J. Biol. Sci. 2021, 28, 4490–4499. [Google Scholar] [CrossRef] [PubMed]
- Fadiji, T.; Rashvand, M.; Daramola, M.O.; Iwarere, S.A. A review on antimicrobial packaging for extending the shelf life of food. Processes 2023, 11, 590. [Google Scholar] [CrossRef]
- Sarkar, S.; Aparna, K. Food packaging and storage. In Research Trends in Home Science and Extension; AkiNik Publications: New Delhi, India, 2020; Volume 3, pp. 27–51. [Google Scholar]
- Yan, M.R.; Hsieh, S.; Ricacho, N. Innovative food packaging, food quality and safety, and consumer perspectives. Processes 2022, 10, 747. [Google Scholar] [CrossRef]
- Lambert, Y.; Demazeau, G.; Largeteau, A.; Bouvier, J.M.; Laborde-Croubit, S.; Cabannes, M. Packaging for high-pressure treatments in the food industry. Packag. Technol. Sci. Int. J. 2000, 13, 63–71. [Google Scholar] [CrossRef]
- Kaushani, K.; Rathnasinghe, N.L.; Katuwawila, N.; Jayasinghe, R.; Nilmini, A.; Priyadarshana, G. Trends in Smart Packaging Technologies for Sustainable Monitoring of Food Quality and Safety. Int. J. Res. Innov. Appl. Sci. 2022, 7, 7–30. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-based sustainable food packaging materials: Challenges, solutions, and applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Millican, J.M.; Agarwal, S. Plastic pollution: A material problem? Macromolecules 2021, 54, 4455–4469. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Chen, M.; Zhao, P.; Wang, Y.; Wang, X.; Han, X.; Wang, J. Development and characterization of biodegradable bilayer packaging films based on corn starch-polylactic acid as raw material. J. Food Meas. Charact. 2024, 18, 625–639. [Google Scholar] [CrossRef]
- ISO11357-3:2018; Plastics—Differential Scanning Calorimetry (DSC) Part 3: Determination of Temperature and Enthalpy of Melting and Crystallization. ISO: Geneva, Switzerland, 2018.
- ISO4593; Plastics—Film and Sheeting—Determination of Thickness by Mechanical Scanning. ISO: Geneva, Switzerland, 1993.
- ISO-15106; Plastics—Film and Sheeting—Determination of Water Vapour Transmission Rate. International Organization for Standardization: Geneva, Switzerland, 2003.
- ASTM1927; Standard Test Method for Determination of Oxygen Gas Transmission Rate, Permeability and Permeance at Controlled Relative Humidity Through Barrier Materials Using a Coulometric Detector. ASTM: Washington, DC, USA, 2020.
- (EU) No. 10; Commission Regulation (EU) No. 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0010&from=EN (accessed on 8 July 2024).
- EN-1186-3; Materials and Articles in Contact with Foodstuffs—Plastics—Part 3: Test Methods for Overall Migration in Evaporable Simulants. European Standards s.r.o.: Plzen, Czech Republic, 2022.
- Numuang, C. CFD Simulation of Heat Conduction in Curry Paste during Sterilization. Food Appl. Biosci. J. 2022, 10, 43–59. [Google Scholar]
- Pakdel, M.; Olsen, A.; Bar, E.M.S. A Review of Food Contaminants and Their Pathways within Food Processing Facilities Using Open Food Processing Equipment. J. Food Prot. 2023, 86, 100184. [Google Scholar] [CrossRef]
- Munir, M.T.; Mtimet, N.; Guillier, L.; Meurens, F.; Fravalo, P.; Federighi, M.; Kooh, P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods 2023, 12, 1580. [Google Scholar] [CrossRef] [PubMed]
- NFV08-408; Microbiology of Foodstuffs. Stability Control of Appertised and Similar Products. French Standards Association (AFNOR): Paris, France, 1997; pp. 1–12.
- NFV08-409; Microbiology of Foodstuffs—Determination of the pH of Sterilised and Similar Products. French Standards Association (AFNOR): Paris France, 1997.
- ISO-7887; Water Quality—Examination and Determination of Colour. ISO: Geneva, Switzerland, 2011.
- Hajji, W.; Gliguem, H.; Bellagha, S.; Allaf, K. Structural and textural improvements of strawberry fruits by partial water removal prior to conventional freezing process. J. Food Meas. Charact. 2022, 16, 3344–3353. [Google Scholar] [CrossRef]
- ISO4120; Sensory Analysis—Methodology—Triangular Test. ISO: Geneva, Switzerland, 2021.
- Khoironi, A.; Anggoro, S.; Sudarno, S. Evaluation of the Interaction Among Microalgae Spirulina sp., Plastics Polyethylene Terephthalate and Polypropylene in Freshwater Environment. J. Ecol. Eng. 2019, 20, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Huang, Y.-Z.; Lin, J.-N.; Li, J. Microplastic constituent identification from admixtures by Fourier-transform infrared (FTIR) spectroscopy: The use of polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and nylon (NY) as the model constituents. Environ. Technol. Innov. 2021, 23, 101798. [Google Scholar] [CrossRef]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Viviana, R.C.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.-J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef]
- Li, Z.; Shi, Y.; Liu, H.; Chen, F.; Zhang, Q.; Wang, K.; Fu, Q. Effect of melting temperature on interfacial interaction and mechanical properties of polypropylene (PP) fiber reinforced olefin block copolymers (OBCs). RSC Adv. 2014, 4, 45234–45243. [Google Scholar] [CrossRef]
- Kassab, A.; Al Nabhani, D.; Mohanty, P.; Pannier, C.; Ayoub, G.Y. Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. Polymers 2023, 15, 3881. [Google Scholar] [CrossRef]
- Tsironi, T.N.; Chatzidakis, S.M.; Stoforos, N.G. The future of polyethylene terephthalate bottles: Challenges and sustainability. Packag. Technol. Sci. 2022, 35, 317–325. [Google Scholar] [CrossRef]
- Olam, M. Mechanical and Thermal Properties of HDPE/PET Microplastics, Applications, and Impact on Environment and Life; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- van Velzen, E.U.T.; Chu, S.; Molenveld, K.; Jašo, V. Effect of poly lactic acid trays on the optical and thermal properties of recycled poly(ethylene terephthalate). Packag. Technol. Sci. 2022, 35, 351–360. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chen, Y.-J.; Tseng, H.-J.; Hsiao, H.-I.; Chai, H.-J.; Shang, K.-C.; Pan, C.-L.; Tsai, G.-J. Applications of Nisin and EDTA in food packaging for improving fabricated chitosan-polylactate plastic film performance and fish fillet preservation. Membranes 2021, 11, 852. [Google Scholar] [CrossRef]
- Singh, A.K.; Itkor, P.; Lee, M.; Shin, J.; Lee, Y.S. Promoting sustainable packaging applications in the circular economy by exploring and advancing molded pulp materials for food products: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 11010–11025. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdelghany, N.; Aboelela, M. Surface modification of polypropylene by grafting films for active food packaging. Egypt. J. Chem. 2023, 66, 439–458. [Google Scholar] [CrossRef]
- Seier, M.; Archodoulaki, V.-M.; Koch, T.; Duscher, B.; Gahleitner, M. Prospects for Recyclable Multilayer Packaging: A Case Study. Polymers 2023, 15, 2966. [Google Scholar] [CrossRef]
- Tariq, A.; Afzal, A.; Rashid, I.A.; Shakir, M.F. Study of thermal, morphological, barrier and viscoelastic properties of PP grafted with maleic anhydride (PP-g-MAH) and PET blends. J. Polym. Res. 2020, 27, 309. [Google Scholar] [CrossRef]
- Ge, C.; Lansing, B.; Lewis, C.L. Thermoplastic starch and poly(vinyl alcohol) blends centered barrier film for food packaging applications. Food Packag. Shelf Life 2021, 27, 100610. [Google Scholar] [CrossRef]
- Dhawan, S.; Barbosa-Cànovas, G.V.; Tang, J.; Sablani, S.S. Oxygen barrier and enthalpy of melting of multilayer EVOH films after pressure-assisted thermal processing and during storage. J. Appl. Polym. Sci. 2011, 122, 1538–1545. [Google Scholar] [CrossRef]
- Schmid, P.; Welle, F. Chemical Migration from Beverage Packaging Materials—A Review. Beverages 2020, 6, 37. [Google Scholar] [CrossRef]
- Fasihnia, S.H.; Peighambardoust, S.H.; Peighambardoust, S.J.; Oromiehie, A.; Soltanzadeh, M.; Peressini, D. Migration analysis, antioxidant, and mechanical characterization of polypropylene-based active food packaging films loaded with BHA, BHT, and TBHQ. J. Food Sci. 2020, 85, 2317–2328. [Google Scholar] [CrossRef]
- Trăistaru, E.; Rivis, A.; Ciprian Moldovan, R.; Menelaou, A.; Georgescu, C. Study regarding the overall migration from plastic packaging materials used in food industry. J. Agroaliment. Process. Technol. 2013, 19, 305–308. [Google Scholar]
- Dumitru, O.M.; Ungureanu, E.L.; Iorga, C.S.; Mustățea, G. Overall migration aspects for plastic food contact materials with food simulants using SPSS statistics. J. Hyg. Eng. Des. 2021, 34, 8. [Google Scholar]
- Kang, K.; Chang, Y.; Choi, J.C.; Park, S.; Han, J. Migration study of butylated hydroxytoluene and Irganox 1010 from polypropylene treated with severe processing conditions. J. Food Sci. 2018, 83, 1005–1010. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Panjagari, N.R. Review on metal packaging: Materials, forms, food applications, safety and recyclability. J. Food Sci. Technol. 2020, 57, 2377–2392. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ni, P.; Yi, Y. Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils. Sci. Total Environ. 2019, 671, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, A.R. Migrating levels of toxic heavy metals in locally made food packaging containers. Egypt. J. Chem. 2022, 65, 521–527. [Google Scholar] [CrossRef]
- Eti, S.A.; Islam, M.S.; Shourove, J.H.; Saha, B.; Ray, S.K.; Sultana, S.; Shaikh, A.A.; Rahman, M.M. Assessment of heavy metals migrated from food contact plastic packaging: Bangladesh perspective. Heliyon 2023, 9, e19667. [Google Scholar] [CrossRef]
- Ross, C.; Sablani, S.; Tang, J. Preserving ready-to-eat meals using microwave technologies for future space programs. Foods 2023, 12, 1322. [Google Scholar] [CrossRef]
- González Sandoval, D.C.; Sosa, B.L.; Martínez-Ávila, G.C.G.; Fuentes, H.R.; Abarca, V.H.A.; Rojas, R. Formulation and Characterization of Edible Films Based on Organic Mucilage from Mexican Opuntia ficus-indica. Coatings 2019, 9, 506. [Google Scholar] [CrossRef]
- Long, J.; Zhang, W.; Zhao, M.; Ruan, C.-Q. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr. Polym. 2023, 321, 121267. [Google Scholar] [CrossRef]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef]
- Ilhan, I.; Turan, D.; Gibson, I.; Klooster, R.T. Understanding the factors affecting the seal integrity in heat sealed flexible food packages: A review. Packag. Technol. Sci. 2021, 34, 321–337. [Google Scholar] [CrossRef]
- Sterr, J.; Fleckenstein, B.S.; Langowski, H.-C. The theory of decompression failure in polymers during the high-pressure processing of food. Food Eng. Rev. 2018, 10, 14–33. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kotsanopoulos, K.V. Migration phenomenon in food packaging. Food–package interactions, mechanisms, types of migrants, testing and relative legislation—A review. Food Bioprocess Technol. 2014, 7, 21–36. [Google Scholar]
- Bubelová, Z.; Černí ková, M.; Buňková, L.; Talár, J.; Zají ček, V.; Foltin, P.; Buňka, F. Quality changes of long-life foods during three-month storage at different temperatures. Potravinarstvo Slovak J. Food Sci. 2017, 11, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.; Krylova, V.; Gustova, T. The effect of storage conditions on the microstructure of sterilized canned meat. Slovak J. Food Sci. 2022, 16, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Tian, L.; Bayen, S. Chemical contaminants in canned food and can-packaged food: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2687–2718. [Google Scholar] [CrossRef] [PubMed]
- Giménez, C.G.; Traffano-Schiffo, M.V.; Sgroppo, S.C.; Sosa, C.A. Development of a bioactive sauce: Effect of the packaging and storage conditions. ChemEngineering 2022, 6, 34. [Google Scholar] [CrossRef]
- Tirtawijaya, G.; Lee, M.-J.; Negara, B.F.S.P.; Cho, W.-H.; Sohn, J.-H.; Kim, J.-S.; Choi, J.-S. Effects of vacuum frying on the preparation of ready-to-heat batter-fried and sauced chub mackerel (Scomber japonicus). Foods 2021, 10, 1962. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.-D.A.; Holman, B.W.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Holman, B.W.B.; El-Din A Bekhit, A.; Waller, M.; Bailes, K.L.; Kerr, M.J.; Hopkins, D.L. The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef. Meat Sci. 2021, 179, 108551. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Leung, C.E.; Corradini, M.G.; Xiao, H.; Kinchla, A.J. Increasing the nutritional value of strawberry puree by adding xylo-oligosaccharides. Heliyon 2020, 6, e03769. [Google Scholar] [CrossRef] [PubMed]
- Koontz, J.L. Packaging Technologies to Control Lipid Oxidation, in Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; Elsevier: Amsterdam, The Netherlands, 2016; pp. 479–517. [Google Scholar]
- Kohan-nia, N.; Pakbin, B.; Mahmoudi, R.; Fakhri, O. Effect of packaging material on color properties of catsup tomato sauce. J. Appl. Packag. Res. 2016, 8, 4. [Google Scholar]
- Forsido, S.F.; Welelaw, E.; Belachew, T.; Hensel, O. Effects of storage temperature and packaging material on physico-chemical, microbial and sensory properties and shelf life of extruded composite baby food flour. Heliyon 2021, 7, e06821. [Google Scholar] [CrossRef] [PubMed]
- Ezeocha, V.C. Effects of different packaging materials on the chemical and sensory properties of moi-moi. Niger. Agric. J. 2021, 52, 201–211. [Google Scholar]
Test Number | Filling Ratio % | Vacuum (mbar) | Pressure (bar) |
---|---|---|---|
1 | 100–75–50 | 500–600–700 | 1.7 |
2 | 75–50 | 800–900–1000 | 1.7 |
3 | 75–62.5–50 | 800–900–1000 | 1.9 |
Simulant | Overall Migration (mg/dm2) | ||
---|---|---|---|
Plastic | Metal Can | ||
Tray | Film | ||
Acetic acid 3% | 2 | 2.55 | 3.49 |
Ethanol 10% | 0.26 | 0.55 | 0.77 |
Ethanol 95% | 1.7 | 3.55 | 22 |
Isooctane | 5.6 | 4.1 | 3.29 |
Element | LQ * (mg/kg of Simulant) | Concentration mg/Kg | LMS * (Plastic) mg/Kg | Concentration mg/Kg (Metal) | LMS (Metal) mg/Kg | |
---|---|---|---|---|---|---|
Tray | Film | |||||
Al | 0.3 | ND * | ND | 1 | 4.52 | ≤5 |
Ba | 0.3 | ND | ND | 1 | ND | ≤0.08 |
Co | 0.024 | ND | ND | 0.05 | ND | ≤0.02 |
Cu | 1 | ND | ND | 5 | ND | ≤4 |
Fe | 4 | ND | ND | 48 | ND | ≤40 |
Li | 0.04 | ND | ND | 0.6 | ND | ≤0.048 |
Mn | 0.04 | ND | ND | 0.6 | ND | ≤1.8 |
Ni | 0.008 | ND | ND | 0.02 | ND | ≤0.14 |
Zn | 1 | ND | ND | 25 | ND | ≤5 |
Filling Ratio (%) | Vacuum (mbar) | Pressure (bar) |
---|---|---|
100 | 500 | 1.7 |
75 | 800 | 1.7 |
62.5 | 900 | 1.9 |
1st Day | 7th Day | 14th Day | 21st Day | 28th Day | ||
---|---|---|---|---|---|---|
pH of Sauce | Plastic tray | 5.2 ± 0.026 a | 5.24 ± 0.05 a | 5.34 ± 0.037 b | 5.23 ± 0.01 a | 5.25 ± 0.01 a |
Metal can | 5.37 ± 0.03 a | 5.50 ± 0.015 b | 5.19 ± 0.005 c | 5.14 ± 0.005 d | 5.3 ± 0.01 e | |
pH of meat | Plastic tray | 5.68 ± 0.04 a | 5.6 ± 0.08 a,b | 5.55 ± 0.05 b | 5.59 ± 0.02 a,b | 5.44 ± 0.04 c |
Metal can | 5.78 ± 0.072 a | 5.52 ± 0. 21 b | 5.36 ± 0.036 b | 5.34 ± 0.045 b | 5.51 ± 0.052 b | |
TVBN of Sauce | Plastic tray | 0.16 ± 0.05 a | 0.187 ± 0.017 a,b | 0.19 ± 0.026 a,b | 0.23 ± 0.01 b | 0.3 ± 0.01 c |
Metal can | 0.05 ± 0.015 a | 0.12 ± 0.001 b | 0.14 ± 0.002 c | 0.16 ± 0.0008 d | 0.17 ± 0.005 d |
1st–7th Day | 7th–14th Day | 14th–21st Day | 21st–28th Day | |
---|---|---|---|---|
TCD Plastic tray | 0.86 ± 0.17 | 0.95 ± 0.16 | 0.95 ± 0.07 | 1.89 ± 0.06 |
TCD Metal can | 0.73 ± 0.004 | 0.58 ± 0.06 | 1.44 ± 0.05 | 1.71 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaali, H.; Hajji, W.; Selmi, R.; Mallek, H.; Ben Khalifa, I.; Bellagha, S.; Jebali, M.; Essid, I. Assessing the Physiochemical and Sensorial Quality of Pea Sauce Canned in Plastic Trays vs. Metal Cans. Processes 2024, 12, 1657. https://doi.org/10.3390/pr12081657
Abdelaali H, Hajji W, Selmi R, Mallek H, Ben Khalifa I, Bellagha S, Jebali M, Essid I. Assessing the Physiochemical and Sensorial Quality of Pea Sauce Canned in Plastic Trays vs. Metal Cans. Processes. 2024; 12(8):1657. https://doi.org/10.3390/pr12081657
Chicago/Turabian StyleAbdelaali, Hedi, Wafa Hajji, Rachid Selmi, Hana Mallek, Imen Ben Khalifa, Sihem Bellagha, Mounir Jebali, and Iness Essid. 2024. "Assessing the Physiochemical and Sensorial Quality of Pea Sauce Canned in Plastic Trays vs. Metal Cans" Processes 12, no. 8: 1657. https://doi.org/10.3390/pr12081657
APA StyleAbdelaali, H., Hajji, W., Selmi, R., Mallek, H., Ben Khalifa, I., Bellagha, S., Jebali, M., & Essid, I. (2024). Assessing the Physiochemical and Sensorial Quality of Pea Sauce Canned in Plastic Trays vs. Metal Cans. Processes, 12(8), 1657. https://doi.org/10.3390/pr12081657