Exploring the Bioactive Properties of Hydroethanolic Cork Extracts of Quercus cerris and Quercus suber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Granulate Preparation
2.3. Extract Preparation
2.4. LC-DAD-ESI-MSn Analysis of Phenolic Compounds
2.5. Antioxidant Activity
2.6. Antiproliferative and NO-Production Inhibition
2.7. Antimicrobial Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Composition
3.2. Extraction Yield and Antioxidant Activity
3.3. Antiproliferative and NO-Production Inhibition Activities
3.4. Antimicrobial Activity
4. Conclusions
- The phenolic composition of hydroethanolic extracts of Q. cerris and Q. suber corks is similar, with phenolic acids and ellagitannins as the principal compounds.
- Hydroethanolic cork extracts of Q. cerris and Q. suber have significant antioxidant, antimicrobial, and anti-proliferative properties.
- The hydroethanolic cork extracts appear to be effective against gastric-, lung-, colon- and breast-cancer cell lines.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Angyalossy, V.; Pace, M.R.; Evert, R.F.; Marcati, C.R.; Oskolski, A.A.; Terrazas, T.; Kotina, E.; Lens, F.P.; Mazzoni-Viveiros, S.C.; Angeles, G. IAWA List of Microscopic Bark Features. IAWA J. 2016, 37, 517–615. [Google Scholar] [CrossRef]
- Pereira, H. Cork: Biology, Production and Uses; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 978-0-444-52967-1. [Google Scholar]
- Şen, A.; Miranda, I.; Santos, S.; Graça, J.; Pereira, H. The Chemical Composition of Cork and Phloem in the Rhytidome of Quercus Cerris Bark. Ind. Crops Prod. 2010, 31, 417–422. [Google Scholar] [CrossRef]
- Sunil, C.; Duraipandiyan, V.; Ignacimuthu, S.; Al-Dhabi, N.A. Antioxidant, Free Radical Scavenging and Liver Protective Effects of Friedelin Isolated from Azima tetracantha Lam. Leaves. Food Chem. 2013, 139, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Antonisamy, P.; Duraipandiyan, V.; Ignacimuthu, S. Anti-Inflammatory, Analgesic and Antipyretic Effects of Friedelin Isolated from Azima tetracantha Lam. in Mouse and Rat Models. J. Pharm. Pharmacol. 2011, 63, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Cadahía, E.; García-Vallejo, M.C.; Fernández de Simón, B. Polyphenolic Composition of Quercus Suber Cork from Different Spanish Provenances. J. Agric. Food Chem. 1998, 46, 3166–3171. [Google Scholar] [CrossRef]
- Conde, E.; Cadahía, E.; García-Vallejo, M.C.; Fernández de Simón, B.; González Adrados, J.R. Low Molecular Weight Polyphenols in Cork of Quercus Suber. J. Agric. Food Chem. 1997, 45, 2695–2700. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Villaverde, J.J.; Sousa, A.F.; Coelho, J.F.J.; Neto, C.P.; Silvestre, A.J.D. Phenolic Composition and Antioxidant Activity of Industrial Cork By-Products. Ind. Crops Prod. 2013, 47, 262–269. [Google Scholar] [CrossRef]
- Mazzoleni, V.; Caldentey, P.; Silva, A. Phenolic Compounds in Cork Used for Production of Wine Stoppers as Affected by Storage and Boiling of Cork Slabs. Am. J. Enol. Vitic. 1998, 49, 6–10. [Google Scholar] [CrossRef]
- Mislata, A.M.; Puxeu, M.; Ferrer-Gallego, R. Aromatic Potential and Bioactivity of Cork Stoppers and Cork By-Products. Foods 2020, 9, 133. [Google Scholar] [CrossRef]
- Conde, E.; Cadahía, E.; Garcia-Vallejo, M.C.; Gonźalez-Adrados, J.R. Chemical Characterization of Reproduction Cork from Spanish Quercus Suber. J. Wood Chem. Technol. 1998, 18, 447–469. [Google Scholar] [CrossRef]
- Fernandes, A.; Fernandes, I.; Cruz, L.; Mateus, N.; Cabral, M.; de Freitas, V. Antioxidant and Biological Properties of Bioactive Phenolic Compounds from Quercus suber L. J. Agric. Food Chem. 2009, 57, 11154–11160. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, P.; Zhou, M.; Wang, T.; Fang, S.; Shang, X.; Fu, X. Geographic Variation in the Chemical Composition and Antioxidant Properties of Phenolic Compounds from Cyclocarya paliurus (Batal) Iljinskaja Leaves. Molecules 2018, 23, 2440. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, S.; Zhou, M.; Shang, X.; Yang, W.; Fu, X. Geographic Variation in Water-Soluble Polysaccharide Content and Antioxidant Activities of Cyclocarya paliurus Leaves. Ind. Crops Prod. 2018, 121, 180–186. [Google Scholar] [CrossRef]
- Carriço, C.; Ribeiro, H.M.; Marto, J. Converting Cork By-Products to Ecofriendly Cork Bioactive Ingredients: Novel Pharmaceutical and Cosmetics Applications. Ind. Crops Prod. 2018, 125, 72–84. [Google Scholar] [CrossRef]
- Pinto, C.; Cravo, S.; Mota, S.; Rego, L.; e Silva, J.R.; Almeida, A.; Afonso, C.M.; Tiritan, M.E.; Cidade, H.; Almeida, I.F. Cork By-Products as a Sustainable Source of Potential Antioxidants. Sustain. Chem. Pharm. 2023, 36, 101252. [Google Scholar] [CrossRef]
- Şen, U.; Viegas, C.; Duarte, M.P.; Maurício, E.M.; Nobre, C.; Correia, R.; Pereira, H.; Gonçalves, M. Maceration of Waste Cork in Binary Hydrophilic Solvents for the Production of Functional Extracts. Environments 2023, 10, 142. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic Profile and Antioxidant Activity of Coleostephus myconis (L.) Rchb.f.: An Underexploited and Highly Disseminated Species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Gangadhar, K.N.; Vizetto-Duarte, C.; Wubshet, S.G.; Nyberg, N.T.; Barreira, L.; Varela, J.; Custódio, L. Maritime Halophyte Species from Southern Portugal as Sources of Bioactive Molecules. Mar. Drugs 2014, 12, 2228–2244. [Google Scholar] [CrossRef]
- Taofiq, O.; Calhelha, R.C.; Heleno, S.; Barros, L.; Martins, A.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. The Contribution of Phenolic Acids to the Anti-Inflammatory Activity of Mushrooms: Screening in Phenolic Extracts, Individual Parent Molecules and Synthesized Glucuronated and Methylated Derivatives. Food Res. Int. 2015, 76, 821–827. [Google Scholar] [CrossRef]
- Wyrepkowski, C.C.; Gomes da Costa, D.L.M.; Sinhorin, A.P.; Vilegas, W.; De Grandis, R.A.; Resende, F.A.; Varanda, E.A.; Dos Santos, L.C. Characterization and Quantification of the Compounds of the Ethanolic Extract from Caesalpinia Ferrea Stem Bark and Evaluation of Their Mutagenic Activity. Molecules 2014, 19, 16039–16057. [Google Scholar] [CrossRef]
- Kim, J.-P.; Lee, I.-K.; Yun, B.-S.; Chung, S.-H.; Shim, G.-S.; Koshino, H.; Yoo, I.-D. Ellagic Acid Rhamnosides from the Stem Bark of Eucalyptus Globulus. Phytochemistry 2001, 57, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Alañón, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.C.; Hermosín-Gutiérrez, I.; Gordon, M.H.; Pérez-Coello, M.S. Antioxidant Capacity and Phenolic Composition of Different Woods Used in Cooperage. Food Chem. 2011, 129, 1584–1590. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K. Antimicrobial Properties of Phenolic Compounds from Berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Pinto, P.C.R.O.; Silvestre, A.J.D.; Neto, C.P. Chemical Composition and Antioxidant Activity of Phenolic Extracts of Cork from Quercus suber L. Ind. Crops Prod. 2010, 31, 521–526. [Google Scholar] [CrossRef]
- Touati, R.; Santos, S.A.O.; Rocha, S.M.; Belhamel, K.; Silvestre, A.J.D. The Potential of Cork from Quercus suber L. Grown in Algeria as a Source of Bioactive Lipophilic and Phenolic Compounds. Ind. Crops Prod. 2015, 76, 936–945. [Google Scholar] [CrossRef]
- Steenkamp, V.; Gouws, M.C. Cytotoxicity of Six South African Medicinal Plant Extracts Used in the Treatment of Cancer. S. Afr. J. Bot. 2006, 72, 630–633. [Google Scholar] [CrossRef]
- Brankiewicz, A.; Trzos, S.; Mrożek, M.; Opydo, M.; Szostak, E.; Dziurka, M.; Tuleja, M.; Łoboda, A.; Pocheć, E. Cytotoxic and Antioxidant Activity of Hypericum perforatum L. Extracts against Human Melanoma Cells from Different Stages of Cancer Progression, Cultured under Normoxia and Hypoxia. Molecules 2023, 28, 1509. [Google Scholar] [CrossRef]
- Al-Nemari, R.; Bacha, A.B.; Al-Senaidy, A.; Almutairi, M.H.; Arafah, M.; Al-Saran, H.; Abutaha, N.; Semlali, A. Cytotoxic Effects of Annona Squamosa Leaves against Breast Cancer Cells via Apoptotic Signaling Proteins. J. King Saud. Univ.-Sci. 2022, 34, 102013. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Damen, F.; Çelik, İ.; Tane, P.; Kuete, V.; Efferth, T. Cytotoxicity of the Crude Extract and Constituents of the Bark of Fagara Tessmannii towards Multi-Factorial Drug Resistant Cancer Cells. J. Ethnopharmacol. 2019, 235, 28–37. [Google Scholar] [CrossRef]
- Maroon, J.C.; Bost, J.W.; Maroon, A. Natural Anti-Inflammatory Agents for Pain Relief. Surg. Neurol. Int. 2010, 1, 80. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef] [PubMed]
- Radulovic, N.S.; Blagojevic, P.D.; Stojanovic-Radic, Z.Z.; Stojanovic, N.M. Antimicrobial Plant Metabolites: Structural Diversity and Mechanism of Action. Curr. Med. Chem. 2013, 20, 932–952. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal Agents: Mechanisms of Action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, E.; González-García, V.; Casanova-Gascón, J.; Barriuso-Vargas, J.J.; Balduque-Gil, J.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Valorization of Quercus suber L. Bark as a Source of Phytochemicals with Antimicrobial Activity against Apple Tree Diseases. Plants 2022, 11, 3415. [Google Scholar] [CrossRef]
- Mota, S.; Pinto, C.; Cravo, S.; Rocha e Silva, J.; Afonso, C.; Sousa Lobo, J.M.; Tiritan, M.E.; Cidade, H.; Almeida, I.F. Quercus Suber: A Promising Sustainable Raw Material for Cosmetic Application. Appl. Sci. 2022, 12, 4604. [Google Scholar] [CrossRef]
- Gonçalves, F.; Correia, P.; Silva, S.P.; Almeida-Aguiar, C. Evaluation of Antimicrobial Properties of Cork. FEMS Microbiol. Lett. 2016, 363, fnv231. [Google Scholar] [CrossRef]
- Hassikou, R.; Oulladi, H.; Arahou, M. Antifungal Activity of Quercus Suber Extracts on Trichophyton Rubrum and Candida Albicans. Phytothérapie 2014, 12, 206–212. [Google Scholar] [CrossRef]
- Pantosti, A.; Venditti, M. What Is MRSA? Eur. Respir. J. 2009, 34, 1190–1196. [Google Scholar] [CrossRef]
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S. Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. Morb. Mortal. Wkly. Rep. 2019, 68, 214. [Google Scholar] [CrossRef]
- Hsu, H.; Sheth, C.C.; Veses, V. Herbal Extracts with Antifungal Activity against Candida Albicans: A Systematic Review. Mini Rev. Med. Chem. 2021, 21, 90–117. [Google Scholar] [CrossRef]
Peak | Rt (min) | λ Max (nm) | [M − H]– (m/z) | MS² | MS³ | MS4 | Assignment |
---|---|---|---|---|---|---|---|
1 | 5.17 | 264 | 477 | 183 | 169, 125 | - | Methyl gallate-pentosyl-hexoside |
2 | 5.39 | - | 345 | 183 | 169, 125 | - | Methyl gallate hexoside |
3 | 5.78 | 5.78 | 260, 292 | 153 | - | - | Protocatechuic acid |
4 | 10.45 | 323 | 179 | - | - | - | Caffeic acid |
5 | 10.45 | - | 289 | - | - | - | Epicatechin |
6 | 18.06 | 321 | 193 | - | - | - | Ferulic acid |
7 | 19.08 | 366 | 301 | - | - | - | Ellagic acid |
8 | 21.8 | - | 187 | 169, 125 | - | - | Gallic acid monohydrate |
9 | 25.21 | 363 | 461 | 315 | 300 | - | Methyl ellagic acid rhamnoside |
10 | 27.92 | - | 551 | 343 | 328 | 313 | 5,6-Dihydroxy-7,3′,4′-Trimethoxyflavone hexoside |
Compound | Quantification (mg/g of Extract) | Student’s t-Test p-Value | |
---|---|---|---|
Q. cerris Cork | Q. suber Cork | ||
Methyl gallate-pentosyl-hexoside | 1.5 ± 0.2 | - | - |
Methyl gallate hexoside | 0.16 ± 0.01 | - | - |
Protocatechuic acid | 2.5 ± 0.10 | 0.94 ± 0.02 | <0.001 |
Caffeic acid | 0.6 ± 0.10 | 0.83 ± 0.01 | <0.001 |
Epicatechin | 2.5 ± 0.50 | - | - |
Ferulic acid | 0.66 ± 0.01 | 1.05 ± 0.004 | <0.001 |
Ellagic acid | 2.7 ± 0.30 | 1.21 ± 0.01 | <0.001 |
Gallic acid monohydrate | - | tr | - |
Methyl ellagic acid rhamnoside | 1.40 ± 0.02 | 1.25 ± 0.01 | <0.001 |
5,6-Dihydroxy-7,3′,4′-Trimethoxyflavone hexoside | - | 0.49 ± 0.01 | - |
Q. cerris Cork | Q. suber Cork | Student’s t-Test p-Value | |
---|---|---|---|
Extraction yield (%) | 3.0 | 2.8 | 0.226 |
Antioxidant activity | |||
TBARS (EC50; μg/mL) a | 86 ± 1 | 759 ± 9 | <0.001 |
OxHLIA Δt = 60 min (EC50; μg/mL) b | 35 ± 2 | 49 ± 3 | <0.001 |
Antiproliferative activity (GI50 μg/mL) c | |||
AGS | 144 ± 10 | 211 ± 15 | <0.001 |
CaCo-2 | 208 ± 1 | >400 | - |
NCI-H460 | 208 ± 2 | >400 | - |
MCF-7 | 210 ± 14 | >400 | - |
Hepatotoxicity (GI50 µg/mL) c | |||
PLP2 | 195 ± 5 | >400 | - |
NO-production inhibition (EC50 μg/mL) d | |||
RAW 264.7 | >400 | >400 | - |
Antibacterial Activity | Q. cerris Cork | Q. suber Cork | Streptomicin * 1 mg/mL | Methicilin * 1 mg/mL | Ampicillin * 10 mg/mL | |||||
---|---|---|---|---|---|---|---|---|---|---|
Food isolates | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
Gram-negative bacteria | ||||||||||
E. cloacae | 5 | >10 | 10 | >10 | 0.007 | 0.007 | n.t. | n.t | 0.15 | 0.15 |
E. coli | 2.5 | >10 | 10 | >10 | 0.01 | 0.01 | n.t. | n.t. | 0.15 | 0.15 |
P. aeruginosa | 10 | >10 | 10 | >10 | 0.06 | 0.06 | n.t. | n.t. | 0.63 | 0.63 |
S. enterica | 5 | >10 | 5 | >10 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 |
Y. enterocolitica | 2.5 | >10 | 5 | >10 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 |
Gram-positive bacteria | ||||||||||
B. cereus | 10 | >10 | 5 | >10 | 0.007 | 0.007 | n.t. | n.t. | n.t. | n.t. |
L. monocytogenes | 5 | >10 | 10 | >10 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 |
S. aureus | 2.5 | >10 | 2.5 | >10 | 0.007 | 0.007 | 0.007 | 0.007 | 0.15 | 0.15 |
Clinical isolates | ||||||||||
Gram-negative bacteria | ||||||||||
E. coli | 5 | >10 | 2.5 | >10 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
K. pneumoniae | 5 | >10 | 2.5 | >10 | 10 | >10 | <0.0078 | <0.0078 | n.t. | n.t. |
M. morganii | 5 | >10 | 2.5 | >10 | >10 | >10 | <0.0078 | <0.0078 | n.t. | n.t. |
P. mirabilis | 2.5 | >10 | 5 | >10 | <015 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
P. aeruginosa | 5 | >10 | 10 | >10 | >10 | >10 | 0.5 | 1 | n.t. | n.t. |
Gram-positive bacteria | ||||||||||
E. faecalis | 5 | >10 | 10 | >10 | <0.15 | <0.15 | n.t. | n.t. | <0.0078 | <0.0078 |
L. monocytogenes | 10 | >10 | 2.5 | >10 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
MRSA | 5 | >10 | 2.5 | >10 | <0.15 | <0.15 | n.t. | n.t. | 0.25 | 0.5 |
Antifungal activity | Ketoconazole * | |||||||||
MIC | MFC | MIC | MFC | MIC | MFC | |||||
A. brasiliensis | 5 | >10 | 10 | >10 | 0.06 | 0.125 | - | - | - | - |
A. fumigatus | 5 | >10 | 10 | >10 | 0.5 | 1 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sen, U.; Almeida, D.; da Silveira, T.F.F.; Pires, T.S.P.; Añibarro-Ortega, M.; Mandim, F.; Barros, L.; Ferreira, I.C.F.R.; Pereira, H.; Fernandes, Â. Exploring the Bioactive Properties of Hydroethanolic Cork Extracts of Quercus cerris and Quercus suber. Processes 2024, 12, 1579. https://doi.org/10.3390/pr12081579
Sen U, Almeida D, da Silveira TFF, Pires TSP, Añibarro-Ortega M, Mandim F, Barros L, Ferreira ICFR, Pereira H, Fernandes Â. Exploring the Bioactive Properties of Hydroethanolic Cork Extracts of Quercus cerris and Quercus suber. Processes. 2024; 12(8):1579. https://doi.org/10.3390/pr12081579
Chicago/Turabian StyleSen, Umut, Daiana Almeida, Tayse F. F. da Silveira, Tânia S. P. Pires, Mikel Añibarro-Ortega, Filipa Mandim, Lillian Barros, Isabel C. F. R. Ferreira, Helena Pereira, and Ângela Fernandes. 2024. "Exploring the Bioactive Properties of Hydroethanolic Cork Extracts of Quercus cerris and Quercus suber" Processes 12, no. 8: 1579. https://doi.org/10.3390/pr12081579
APA StyleSen, U., Almeida, D., da Silveira, T. F. F., Pires, T. S. P., Añibarro-Ortega, M., Mandim, F., Barros, L., Ferreira, I. C. F. R., Pereira, H., & Fernandes, Â. (2024). Exploring the Bioactive Properties of Hydroethanolic Cork Extracts of Quercus cerris and Quercus suber. Processes, 12(8), 1579. https://doi.org/10.3390/pr12081579