Study on Microwave Freeze-Drying of Krill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Analytical Reagents
2.3. Experimental Equipment
2.4. Drying Methods
2.4.1. Hot-Air Drying
2.4.2. Freeze-Drying
2.4.3. Microwave Freeze-Drying
2.5. Drying Energy Consumption
2.6. Quality Analysis
2.6.1. Appearance
2.6.2. Color
2.6.3. Crude Lipid Content
2.6.4. EPA and DHA Content
2.6.5. Phosphorus Content
2.6.6. Total Carotenoid Content
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Microwave Power Density on Microwave Freeze-Drying of Krill
3.2. Effect of Loading on Drying Kinetics and Energy Consumption during Microwave Freeze-Drying of Krill
3.3. Effect of Different Drying Methods on the Quality of Krill
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gigliotti, J.C.; Davenport, M.P.; Beamer, S.K.; Tou, J.C.; Jaczynski, J. Extraction and characterisation of lipids from Antarctic krill (Euphausia superba). Food Chem. 2011, 125, 1028–1036. [Google Scholar] [CrossRef]
- Xie, D.; Gong, M.; Wei, W.; Jin, J.; Wang, X.; Wang, X.; Jin, Q. Antarctic krill (Euphausia superba) oil: A comprehensive review of chemical composition, extraction technologies, health benefits, and current applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 514–534. [Google Scholar] [CrossRef] [PubMed]
- Sjöodahl, J.; Emmer, Å.; Vincent, J.; Roeraade, J. Characterization of proteinases from Antarctic krill (Euphausia superba). Protein Expr. Purif. 2002, 26, 153–161. [Google Scholar] [CrossRef]
- Turkiewicz, M.; Kalinowska, H.; Krystynowicz, A.; Kaluzewska, M. Lipolytic activity of Antarctic krill, Euphausia superba Dana. Pol. Polar Res. 1995, 16, 185–198. [Google Scholar]
- Chi, H.; Li, X.; Yang, X. Processing status and utilization strategies of antarctic krill (Euphausia superba) in china. World J. Fish Mar. Sci. 2013, 5, 275–281. [Google Scholar]
- Mujumdar, A.S.; Huang, L.X. Global R&D needs in drying. Dry. Technol. 2007, 25, 647–658. [Google Scholar]
- Sablani, S.S. Drying of fruits and vegetables: Retention of nutritional/functional quality. Dry. Technol. 2006, 24, 123–135. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Mujumdar, A.S. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review. Cri. Rev. Food Sci. Nutr. 2019, 59, 1357–1366. [Google Scholar] [CrossRef]
- Li, X.; Yi, J.; He, J.; Dong, J.; Duan, X. Comparative evaluation of quality characteristics of fermented napa cabbage subjected to hot air drying, vacuum freeze drying, and microwave freeze drying. LWT 2024, 192, 115740. [Google Scholar] [CrossRef]
- Liu, L.; Shi, S.; Zhang, Y.; Li, Y.; Guo, J.; Zhang, M. Effect of microwave freeze drying on moisture migration and gel characteristics of egg white protein. J. Food Process. Preserv. 2022, 46, e16899. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Duan, X.; Ren, G.; Li, L.; Cao, W.; Guo, J.; Jio, X.; Zhu, L.; Wei, X. Effects of freezing and drying programs on IgY aggregation and activity during microwave freeze-drying: Protective effects and interactions of trehalose and mannitol. Int. J. Biol. Macromol. 2024, 260, 129448. [Google Scholar] [CrossRef] [PubMed]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Chen, S.-D.; Ofoli, R.Y.; Scott, E.P.; Asmussen, J. Volatile retention in microwave freeze-dried model foods. J. Food Sci. 1993, 58, 1157–1161. [Google Scholar] [CrossRef]
- Cohen, J.S.; Yang, T.C. Progress in food dehydration. Trends Food Sci. Technol. 1995, 6, 20–25. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, M.; Mujumdar, A.S.; Wang, R. Trends in microwave-assisted freeze drying of foods. Dry. Technol. 2010, 28, 444–453. [Google Scholar] [CrossRef]
- Durak, Z.; Palazoğlu, T.K.; Miran, W.; Cin, M. Effect of microwave freeze-drying and different heating rates on the quality and nutrient content of strawberries. Food Bioprocess Technol. 2023, 1–14. [Google Scholar] [CrossRef]
- Chen, B.L.; Lin, G.S.; Amani, M.; Yan, W.M. Microwave-assisted freeze drying of pineapple: Kinetic, product quality, and energy consumption. Case Stud. Therm. Eng. 2023, 41, 102682. [Google Scholar] [CrossRef]
- Ando, Y.; Nei, D. Comparison of potato void structures dried by air-drying, freeze-drying, and microwave-vacuum-drying, and the physical properties of powders after grinding. Food Bioprocess Technol. 2023, 16, 447–458. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Bai, D.; Xu, M.; Cao, W.; Ren, G.; Ren, A.; Duan, X. Physicochemical, pasting properties and in vitro starch digestion of Chinese yam flours as affected by microwave freeze-drying. Foods 2022, 11, 2324. [Google Scholar] [CrossRef]
- Peng, Z.; Cheng, L.; Meng, K.; Shen, Y.; Wu, D.; Shu, X. Retaining a large amount of resistant starch in cooked potato through microwave heating after freeze-drying. Curr. Res. Food Sci. 2022, 5, 1660–1667. [Google Scholar] [CrossRef]
- Lombraña, J.I.; Zuazo, I.; Ikara, J. Moisture diffusivity behavior during freeze drying under microwave heating power application. Drying Technol. 2001, 19, 1613–1627. [Google Scholar] [CrossRef]
- Kemerli-Kalbaran, T.; Ozdemir, M. Impacts of microwave and freeze-drying methods on drying kinetics, physicochemical properties and antioxidant activity of pine nut (Pinus pinea L.). Heat Mass Transf. 2024, 60, 31–46. [Google Scholar] [CrossRef]
- Wang, Z.H.; Shi, M.H. Numerical study on sublimation–condensation phenomena during microwave freeze drying. Chem. Eng. Sci. 1998, 53, 3189–3197. [Google Scholar] [CrossRef]
- Gould, J.W.; Kenyon, E.M. Microwave Applications to Freeze Dehydration: Gaseous Breakdown vs. Electric Field Strength; No. FL-119; US Army Natick Laboratories: Natick, MA, USA, 1970. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; Champaign, No. 1, 3A and 6; American Oil Chemists’ Society: Urbana, IL, USA, 1975; pp. 7–15. [Google Scholar]
- Tosi, E.A.; Cazzoli, A.F.; Tapiz, L.M. Phosphorus in oil. Production of molybdenum blue derivative at ambient temperature using noncarcinogenic reagents. J. Am. Oil Chem. Soci. 1998, 75, 41–44. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, M.; Mujumdar, A.S. Studies on the microwave freeze drying technique and sterilization characteristics of cabbage. Dry. Technol. 2007, 25, 1725–1731. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, M.; Mujumdar, A.S.; Sun, J.-C. Microwave freeze–drying characteristics and sensory quality of instant vegetable soup. Dry. Technol. 2009, 27, 962–968. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, M.; Mujumdar, A.S. Effects of vacuum and microwave freeze drying on microstructure and quality of potato slices. J. Food Eng. 2010, 101, 131–139. [Google Scholar] [CrossRef]
Power (W) | Linear Regression Equation | R2 | Drying Rate (g/h) | * Drying Time (min) |
---|---|---|---|---|
50 | y = −0.4728x + 50.507 | 0.995 | 28.37 | 76 |
70 | y = −0.6200x + 50.886 | 0.995 | 37.20 | 57 |
90 | y= −0.9287x + 50.960 | 0.994 | 55.72 | 40 |
FD | y = −0.0421x + 47.475 | 0.979 | 2.53 | 868 |
Weight (g) | Linear Regression Equation | R2 | Drying Rate (g/hr) | * Drying Time (min) |
---|---|---|---|---|
50 | y = −0.4256x + 50.684 | 0.998 | 25.54 | 83 |
100 | y = −0.5508x + 102.92 | 0.996 | 32.32 | 133 |
150 | y= −0.5765x + 156.96 | 0.995 | 34.31 | 191 |
200 | y= −0.5179x + 208.27 | 0.997 | 34.10 | 264 |
Drying Method | Linear Regression Equation | R2 | Drying Rate (DMC/h) | * Drying Time (h) |
---|---|---|---|---|
Hot-air drying (HAD) | y = −0.050x + 1 | 0.981 | 0.050 | 18 |
Freeze-drying (FD) | y = −0.056x + 1 | 0.996 | 0.056 | 16 |
Microwave freeze-drying (90 W MWFD) | y= −1.353x + 1 | 0.992 | 1.323 | 0.67 |
MWFD Power (W) | Condenser (kJ) | Vacuum Pump (kJ) | Microwave (kJ) | Total Energy Consumption (kJ) | * Energy Saving (%) |
---|---|---|---|---|---|
50 | 1,808 | 1,677 | 262 | 3,746 | 89.19 |
70 | 1,199 | 1,113 | 243 | 2,555 | 92.63 |
90 | 912 | 846 | 238 | 1995 | 94.24 |
FD | 17,977 | 16,674 | 0 | 34,651 | 0.00 |
Drying Method | L* | a* | b* | ΔE |
---|---|---|---|---|
FD | 45.25 ± 3.92 a | 11.56 ± 0.76 c | 31.23 ± 3.92 a | 0 |
MWFD | 40.04 ± 3.11 b | 15.83 ± 0.98 a | 28.38 ± 1.99 b | 7.32 |
HAD | 30.91 ± 0.46 c | 13.21 ± 0.31 b | 18.82 ± 0.48 c | 19.04 |
Samples | Total Carotenoids (μg/g d. b.) | Phospholipid (%) | DHA (mg/g d. b.) |
---|---|---|---|
Fresh | 218.41 ± 45.63 a | 16.30 ± 0.34 a | 11.67 ± 0.22 a |
FD | 137.29 ± 39.28 b | 5.17 ± 0.023 c | 8.59 ± 0.56 b |
90W MWFD | 136.82 ± 17.11 b | 4.77 ± 0.14 d | 7.57 ± 0.10 c |
HAD | 120.54 ± 24.52 b | 5.60 ± 0.06 b | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.-C.; Chen, S.-D. Study on Microwave Freeze-Drying of Krill. Processes 2024, 12, 1366. https://doi.org/10.3390/pr12071366
Chang H-C, Chen S-D. Study on Microwave Freeze-Drying of Krill. Processes. 2024; 12(7):1366. https://doi.org/10.3390/pr12071366
Chicago/Turabian StyleChang, Hao-Cheng, and Su-Der Chen. 2024. "Study on Microwave Freeze-Drying of Krill" Processes 12, no. 7: 1366. https://doi.org/10.3390/pr12071366
APA StyleChang, H.-C., & Chen, S.-D. (2024). Study on Microwave Freeze-Drying of Krill. Processes, 12(7), 1366. https://doi.org/10.3390/pr12071366