Differential Analysis of Pomelo Peel Fermentation by Cordyceps militaris Based on Untargeted Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Culture Medium
2.3. Preparation of Fermentation Liquid Samples
3. Sample Analysis
3.1. Sample Pretreatment
3.2. Chromatographic Conditions
3.3. Mass Spectrum Conditions
3.4. Data Preprocessing
3.5. Pathway Analysis
3.6. Data Analysis
4. Results and Discussion
4.1. Chromatogram of the Base Peak
4.2. PCA
4.3. PLS-DA Analysis
4.4. Metabolite Differential Analysis
4.5. Differential Pathway Enrichment Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, Y.Z. Research Progress on the Comprehensive Utilization of Pomelo Peel. Agricull Prod. Process. 2022, 23, 87–91. [Google Scholar]
- Yao, L.Y.; Zhang, J.; Wang, X.M.; Xia, X.H.; Zhu, L.; Feng, T. Research progress on the effective active ingredients of pomelo peel. Chin. Fruits Veg. 2023, 43, 42–48. [Google Scholar]
- Visakh, N.U.; Pathrose, B.; Narayanankutty, A.; Alfarhan, A.; Ramesh, V. Utilization of pomelo (Citrus maxima) peel waste into bioactive essential oils: Chemical composition and insecticidal properties. Insects 2022, 13, 480. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, Q.; Cao, L.; Li, S.; Zeng, X.C.; Zhou, W.B.; Zhang, C. Synthesis and application of porous carbon nanomaterials from pomelo peels: A review. Molecules 2023, 28, 4429. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.H.; Xu, Y.Y.; Qu, H.; Zhou, H.B.; Yang, H.L. Enhancement of anti-diabetic activity of pomelo peel by the fermentation of Aspergillus oryzae CGMCC23295: In vitro and in silico docking studies. Food Chem. 2024, 432, 137195. [Google Scholar] [CrossRef] [PubMed]
- Borkar, V.; Chakraborty, S.; Gokhale, J.S. Fermentative Production of Naringinase from Aspergillus niger van Tieghem MTCC 2425 Using Citrus Wastes: Process Optimization, Partial Purification, and Characterization. Appl. Biochem. Biotechnol. 2020, 193, 1321–1337. [Google Scholar] [CrossRef] [PubMed]
- Li, T. Effects of Mixed Bacterial Fermentation on the Quality of Pomelo Vinegar and Antioxidant Activity of Phenolics. Master’s Thesis, Xiangtan University, Xiangtan, China, 2021. [Google Scholar]
- Tian, X. Yeast and Its Application Study on the Variation of Flavonoids in Pomelo Peel Fermented by Yeast and Its Application. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2018. [Google Scholar]
- Kausik, M.; Bubai, P.; Rakhi, S. An analysis of exo-polygalacturonase bioprocess in submerged and solid-state fermentation by Pleurotus ostreatus using pomelo peel powder as carbon source. J. Genet. Eng. Biotechnol. 2020, 18, 47. [Google Scholar]
- Borde, M.; Singh, S.K. Enhanced production of cordycepin under solid-state fermentation of Cordyceps militaris by using combinations of grains/substrates. Braz. J. Microbiol. 2023, 54, 2765–2772. [Google Scholar] [CrossRef]
- Foti, P.; Randazzo, C.L.; Russo, M.; Sanzo, R.D.; Romeo, F.V.; Scilimati, A.; Miciaccia, M.; Perrone, M.G.; Caggia, C. Effect of microbial fermentation on functional traits and volatiloma profile of pâté olive cake. Food Res Int. 2023, 174, 1113510. [Google Scholar] [CrossRef]
- Fan, D.D.; Wang, W.; Zhong, J.J. Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem. Eng. J. 2011, 60, 30–35. [Google Scholar] [CrossRef]
- Liu, P.X.; Ma, J.X.; Liang, R.N.; He, X.W.; Zhao, G.Z. Development of an efficient method for separation and purification of cordycepin from liquid fermentation of Cordyceps militaris and analysis of cordycepin antitumor activity. Heliyon 2023, 9, e14184. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kim, G.S.; Lee, S.E.; Cho, J.H.; Sung, G.H.; Lee, D.Y. Anti-inflammatory effects of Cordyceps militaris extracts. J. Mushroom. 2012, 10, 249–253. [Google Scholar]
- Lee, M.S.; Koo, B.S. Effects of Cordyceps militaris Extract powder on plasma lipids and glucose in rats. J. Korean Soc. Food Cul. 2004, 2, 217–222. [Google Scholar]
- Lee, H.H.; Lee, S.; Lee, K.; Shin, Y.S.; Kang, H.J.; Cho, H.S. Anticancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. DARU-J. Pharm Sci. 2015, 23, 35. [Google Scholar] [CrossRef] [PubMed]
- Baidoo, E.E.K. Microbial Metabolomics. Methods in Molecular Biology; Humana: New York, NY, USA, 2019. [Google Scholar]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis, M.S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef] [PubMed]
- Zelena, E.; Dunn, W.B.; Broadhurst, D.; Francis, M.S.; Carroll, K.M.; Begley, P.; O’Hagan, S.; Knowles, J.D.; Halsall, A.; Wilson, I.D.; et al. Development of a robust and repeatable UPLC–MS method for the long-term metabolomic study of human serum. Anal. Chem. 2009, 81, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC–MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Rasmussen, J.A.; Villumsen, K.R.; Ernst, M.; Hansen, M.; Forberg, T.; Gopalakrishnan, S.; Gilbert, M.T.P.; Bojesen, A.M.; Kristiansen, K.; Limborg, M.T. A multiomics approach unravels metagenomic and metabolic alterations of a probiotic and synbiotic additive in rainbow trout (Oncorhynchus mykiss). Microbiome 2022, 10, 21. [Google Scholar] [CrossRef]
- Navarro, R.M.; Jaumot, J.; García, R.A.; Tauler, R. Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC–MS with XCMS and MCR-ALS data analysis strategies. Anal. Bioanal. Chem. 2015, 407, 8835–8847. [Google Scholar] [CrossRef]
- Wishart, D.S.; Dan, T.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The human metabolome database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectro. 2010, 45, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Abdelrazig, S.; Safo, L.; Rance, G.A.; Fay, M.W. Metabolic characterization of Magnetospirillum gryphiswaldense MSR-1 using LC–MS-based metabolite profiling. RSC Adv. 2020, 10, 32548–32560. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Thévenot, E.A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical Analyses. J. Proteome Res. 2015, 14, 3322–3335. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Yang, X.; Zhou, J.; Chen, S.X.; Li, X.Y.; Jian, F.; Deng, P.C.; Li, W. Analysis of plasma metabolic biomarkers in the development of 4-nitroquinoline-1-oxide-induced oral carcinogenesis in rats. Oncol. Lett. 2015, 9, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Chetta, P.; Sriram, R.; Zadra, G. Lactate as key metabolite in prostate cancer progression: What are the clinical implications. Cancers 2023, 15, 3473. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, J.; Su, C.X. Research Progress on Fatty Acid Metabolism Reprogramming in Lung Cancer. Chin. J. Cancer 2023, 33, 517–526. [Google Scholar]
- Cai, J.; Zuo, Y.; Wang, T.; Cao, Y.; Cai, R.; Chen, F.L.; Cheng, J.; Mu, J. A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity. Oncogene 2016, 35, 4949–4956. [Google Scholar] [CrossRef] [PubMed]
- Qing, G.L.; Li, B.; Vu, A.; Nicolas, S.; Zandra, E.W.; Liu, X.Y.; Patrick, A.M.; David, R.W.; Craig, B.T.; John, M.M.; et al. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 2012, 22, 631–644. [Google Scholar] [CrossRef]
- Liu, Y.H.; Gao, L.; Wang, Y.J.; Yan, F. Research Progress on the Mechanism of c-Myc Regulating Tumor Metabolism. J. China Pharm. Univ. 2021, 52, 379–386. [Google Scholar]
- Bhutia, Y.D.; Ganapathy, V. Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim. Biophys. Acta 2016, 1863, 2531–2539. [Google Scholar] [CrossRef] [PubMed]
- Still, E.R.; Yuneva, M.O. Hopefully devoted to Q: Targeting glutamine addiction in cancer. Br. J. Cancer 2017, 116, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Liao, D.W.; Wang, X.C.; Wei, Y.Y.; Huang, Q.C.; Du, Y.L. Current Research Status of Mitochondrial Retrograde Signaling in Tumor Progression. Chin. J. Cancer Prev. Treat. 2023, 15, 672–676. [Google Scholar]
- Maurya, A.K.; Vinayak, M. Quercetin Regresses Dalton’s Lymphoma Growth via Suppression of PI3K/AKT Signaling Leading to Upregulation of p53 and Decrease in Energy Metabolism. Nutr. Cancer Int. J. 2015, 67, 354–363. [Google Scholar] [CrossRef]
- Li, H.Y.; Xie, Q.; Wang, C.; Li, J.X.; Ma, R.; Ren, M.H.; Li, Y.; Wang, J.J.; Chen, H.; Wang, J. Research Progress on the Application and Mechanism of Zebrafish in Drug Toxicology Assessment. Chin. Herb. Med. 2021, 52, 278–288. [Google Scholar]
Model | Mobile Phase | Gradient Elution Procedure/Min | ||||
---|---|---|---|---|---|---|
0~1 | 1~8 | 8~10 | 10.0~10.1 | 10.1~12 | ||
Positive | A: 0.1% formic acid | 8%B | 8~98%B | 98%B | 98~8%B | 8%B |
B: 0.1% formic acid acetonitrile | ||||||
Negative | C: 5 mM ammonium formate water | 8%D | 8~98%D | 98%D | 98~8%D | 8%D |
D: acetonitrile |
NO. | Name | m/z | Chemical Formula | p Value | VIP | NP Sperclass |
---|---|---|---|---|---|---|
1 | Acetaminophen − | 150.05 | C8H9NO2 | 3.30344 × 10−11 | 1.3935 | Amino acids |
2 | L-Prolinamide + | 115.09 | C5H10N2O | 4.34062 × 10−11 | 1.4141 | Alkaloids |
3 | Garbanzol + | 273.08 | C15H12O5 | 3.48078 × 10−10 | 1.3799 | Flavonoids |
4 | Apiole + | 223.10 | C12H14O4 | 5.64748 × 10−10 | 1.5400 | Organic compounds |
5 | 4-Pyridoxic acid − | 182.04 | C8H9NO4 | 5.73305 × 10−10 | 1.2957 | Organic acids |
6 | Glucose 6-phosphate + | 261.04 | C6H13O9P | 7.44640 × 10−10 | 1.4828 | Organic compounds |
7 | 9-Riburonosyladenine * | 281.10 | C10H11N5O5 | 2.77269 × 10−9 | 1.5659 | Purine nucleoside |
8 | Nicotinate D-ribonucleoside + | 256.08 | C11H14NO6 | 5.35013 × 10−9 | 1.5638 | Glycosylamines |
9 | Fustin + | 289.07 | C15H12O6 | 7.47890 × 10−9 | 1.1605 | Flavonoids |
10 | L-Proline + | 116.07 | C5H9NO2 | 7.95349 × 10−9 | 1.3897 | Amino acid |
11 | Diaminopimelic acid * | 190.11 | C7H14N2O4 | 9.32928 × 10−9 | 1.6918 | Amino acids |
12 | Azelaic acid − | 187.02 | C9H16O4 | 1.06839 × 10−8 | 1.5798 | fatty acids |
13 | N-Acetylneuraminate * | 292.10 | C11H19NO9 | 1.32682 × 10−8 | 1.6977 | Sialic acid |
14 | L-Tyrosine + | 182.08 | C9H11NO3 | 1.33875 × 10−8 | 1.2957 | Amino acids |
15 | 2-Pyrocatechuic acid − | 153.02 | C7H6O4 | 1.72199 × 10−8 | 1.6427 | Organic acids |
16 | Epinephrine * | 164.07 | C9H13NO3 | 1.95453 × 10−8 | 1.3977 | Hormones |
17 | 7-Aminomethyl-7-carbaguanine * | 179.07 | C7H9N5O | 2.93473 × 10−8 | 1.4334 | Purine nucleoside |
18 | Bufotenin + | 205.13 | C12H16N2O | 3.05451 × 10−8 | 1.6156 | Alkaloids |
19 | Hydroxylaminobenzene − | 108.04 | C6H7NO | 3.69881 × 10−8 | 1.5646 | Alkaloids |
20 | 2′,6′-Dihydroxy-4′-methoxyacetophenone * | 165.05 | C9H10O4 | 3.95480 × 10−8 | 1.2605 | Flavonoids |
21 | Indolelactic acid + | 206.08 | C11H11NO3 | 4.45419 × 10−8 | 1.1724 | Organic acids |
22 | 5-Acetamidovalerate − | 160.10 | C7H13NO3 | 5.85765 × 10−8 | 1.5652 | Organic acids |
23 | Diosmin − | 609.19 | C28H32O15 | 7.64596 × 10−8 | 1.3322 | Organic compounds |
24 | Isoelemicin − | 209.12 | C12H16O3 | 8.07480 × 10−8 | 1.5188 | Organic compounds |
25 | Galactonolactone * | 178.05 | C6H10O6 | 8.40480 × 10−8 | 1.6253 | Organic compounds |
26 | Kyotorphin * | 337.17 | C15H23N5O4 | 1.74520 × 10−7 | 1.1112 | Organic acids |
27 | L-Tryptophan + | 205.10 | C11H12N2O2 | 1.78887 × 10−7 | 1.1847 | Amino acid |
28 | L-Galactono-1,5-lactone + | 178.05 | C6H10O6 | 1.80560 × 10−7 | 1.6007 | Organic compounds |
29 | Hydantoin-5-propionic acid | 171.04 | C6H8N2O4 | 1.88976 × 10−7 | 1.3415 | Organic acids |
30 | Pipecolic acid + | 130.09 | C6H11NO2 | 2.05303 × 10−7 | 1.6678 | Organic acids |
31 | Oxalureate + | 133.03 | C3H4N2O4 | 2.85196 × 10−7 | 1.4726 | Organic acids |
32 | Naringenin 7-O-beta-D-glucoside − | 435.13 | C21H22O10 | 3.10162 × 10−7 | 1.5056 | Flavonoids |
33 | L-Arginine + | 175.12 | C6H14N4O2 | 3.88464 × 10−7 | 1.5385 | Amino acid |
34 | N-Acetyl-L-aspartic acid − | 174.04 | C6H9NO5 | 3.98517 × 10−7 | 1.6104 | Amino acid |
35 | N-Acetyl-a-neuraminic acid * | 290.09 | C11H19NO9 | 5.70871 × 10−7 | 1.1892 | Organic compounds |
36 | 5-Aminopentanoic acid + | 118.09 | C5H11NO2 | 5.92656 × 10−7 | 1.2658 | Amino acid |
37 | Butyryl-L-carnitine + | 232.15 | C11H21NO4 | 6.40823 × 10−7 | 1.2392 | Alkaloids |
38 | Cinnamaldehyde + | 133.07 | C9H8O | 8.23226 × 10−7 | 1.6345 | Flavonoids |
39 | Leucodopachrome + | 196.06 | C9H9NO4 | 1.24550 × 10−6 | 1.6427 | Alkaloids |
40 | N-Acetylmuramate * | 276.11 | C11H19NO8 | 1.34769 × 10−6 | 1.6425 | Organic compounds |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Tian, S.; Luo, X.; Cai, C.; Du, Y.; Yang, H.; Gao, H. Differential Analysis of Pomelo Peel Fermentation by Cordyceps militaris Based on Untargeted Metabolomics. Processes 2024, 12, 687. https://doi.org/10.3390/pr12040687
Xiang Y, Tian S, Luo X, Cai C, Du Y, Yang H, Gao H. Differential Analysis of Pomelo Peel Fermentation by Cordyceps militaris Based on Untargeted Metabolomics. Processes. 2024; 12(4):687. https://doi.org/10.3390/pr12040687
Chicago/Turabian StyleXiang, Yannan, Siyi Tian, Xinyu Luo, Chenggang Cai, Yaowen Du, Hailong Yang, and Haiyan Gao. 2024. "Differential Analysis of Pomelo Peel Fermentation by Cordyceps militaris Based on Untargeted Metabolomics" Processes 12, no. 4: 687. https://doi.org/10.3390/pr12040687
APA StyleXiang, Y., Tian, S., Luo, X., Cai, C., Du, Y., Yang, H., & Gao, H. (2024). Differential Analysis of Pomelo Peel Fermentation by Cordyceps militaris Based on Untargeted Metabolomics. Processes, 12(4), 687. https://doi.org/10.3390/pr12040687