Economic Modelling of Mixing Hydrogen with Natural Gas
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zakaria, Z.; Kamarudin, S.K.; Salehmin, M.N.I.; Ahmad, N.N.R.; Aminuddin, M.A.; Hanapi, I.H.; Osman, S.H.; Mohamad, A.A. Energy scenario in Malaysia: Embarking on the potential use of hydrogen energy. Int. J. Hydrogen Energy 2023, 48, 35685–35707. [Google Scholar] [CrossRef]
- Frigo, G.; Baumann, M.; Hillerbrand, R. Energy and the good life: Capabilities as the foundation of the right to access energy services. J. Hum. Dev. Capab. 2021, 22, 218–248. [Google Scholar] [CrossRef]
- Dogaru, L. The main goals of the fourth industrial revolution. Renewable Energy Perspectives. Procedia Manuf. 2020, 46, 397–401. [Google Scholar] [CrossRef]
- Mukelabai, M.D.; Wijayantha, K.G.U.; Blanchard, R.E. Hydrogen technology adoption analysis in Africa using a Doughnut-PESTLE hydrogen model (DPHM). Int. J. Hydrogen Energy 2022, 47, 31521–31540. [Google Scholar] [CrossRef]
- Jaramillo, L.B.; Weidlich, A. Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads. Appl. Energy 2016, 169, 857–865. [Google Scholar] [CrossRef]
- Salvi, B.L.; Subramanian, K.A. Sustainable development of road transportation sector using hydrogen energy system. Renew. Sustain. Energy Rev. 2015, 51, 1132–1155. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, H.; Wang, J.; Xue, Q.; Ren, B.; Yang, F. The production and application of hydrogen in steel industry. Int. J. Hydrogen Energy 2021, 46, 10548–10569. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z.; Mohammad, M.; Narayanan, B.; Sopian, K. Renewable hydrogen economy in Asia—Opportunities and challenges: An overview. Renew. Sustain. Energy Rev. 2014, 30, 743–757. [Google Scholar] [CrossRef]
- Ehret, O.; Bonhoff, K. Hydrogen as a fuel and energy storage: Success factors for the German Energiewende. Int. J. Hydrogen Energy 2015, 40, 5526–5533. [Google Scholar] [CrossRef]
- Ge, Y.; Han, J.; Zhu, X.; Zhu, W.; Yang, J. A combined cooling, heating and power system with energy storage of waste heat to hydrogen. Appl. Therm. Eng. 2023, 225, 120224. [Google Scholar] [CrossRef]
- Ebrahimi-Moghadam, A.; Farzaneh-Gord, M. Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production. Appl. Energy 2022, 309, 118453. [Google Scholar] [CrossRef]
- Ausfelder, F.; Bazzanella, A. Hydrogen in the chemical industry. In Hydrogen Science and Engineering: Materials, Processes, Systems and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 19–40. [Google Scholar]
- Rambhujun, N.; Salman, M.S.; Wang, T.; Pratthana, C.; Sapkota, P.; Costalin, M.; Lai, Q.; Aguey-Zinsou, K.F. Renewable hydrogen for the chemical industry. MRS Energy Sustain. 2020, 7, E33. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. A review on potential use of hydrogen in aviation applications. Int. J. Sustain. Aviat. 2016, 2, 74–100. [Google Scholar] [CrossRef]
- Li, B.; Roche, R.; Paire, D.; Miraoui, A. Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation. Appl. Energy 2017, 205, 1244–1259. [Google Scholar] [CrossRef]
- Ustolin, F.; Campari, A.; Taccani, R. An extensive review of liquid hydrogen in transportation with focus on the maritime sector. J. Mar. Sci. Eng. 2022, 10, 1222. [Google Scholar] [CrossRef]
- Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 2021, 14, 815–843. [Google Scholar] [CrossRef]
- Irimia-Vladu, M.; Kanbur, Y.; Camaioni, F.; Coppola, M.E.; Yumusak, C.; Irimia, C.V.; Vlad, A.; Operamolla, A.; Farinola, G.M.; Suranna, G.P.; et al. Stability of selected hydrogen bonded semiconductors in organic electronic devices. Chem. Mater. 2019, 31, 6315–6346. [Google Scholar] [CrossRef]
- Penev, M.; Zuboy, J.; Hunter, C. Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations. Transp. Res. Part D Transp. Environ. 2019, 77, 92–105. [Google Scholar] [CrossRef]
- AlShafi, M.; Bicer, Y. Assessment of various energy storage methods for implementation in hot and arid climates. Energy Storage 2020, 2, e191. [Google Scholar] [CrossRef]
- Vidas, L.; Castro, R.; Pires, A. A review of the impact of hydrogen integration in natural gas distribution networks and electric smart grids. Energies 2022, 15, 3160. [Google Scholar] [CrossRef]
- Ohaeri, E.; Eduok, U.; Szpunar, J. Hydrogen related degradation in pipeline steel: A review. Int. J. Hydrogen Energy 2018, 43, 14584–14617. [Google Scholar] [CrossRef]
- Mahajan, D.; Tan, K.; Venkatesh, T.; Kileti, P.; Clayton, C.R. Hydrogen blending in gas pipeline networks—A review. Energies 2022, 15, 3582. [Google Scholar] [CrossRef]
- Kappes, M.A.; Perez, T. Hydrogen blending in existing natural gas transmission pipelines: A review of hydrogen embrittlement, governing codes, and life prediction methods. Corros. Rev. 2023, 41, 319–347. [Google Scholar] [CrossRef]
- Neacsa, A.; Eparu, C.N.; Stoica, D.B. Hydrogen–natural gas blending in distribution systems—An energy, economic, and environmental assessment. Energies 2022, 15, 6143. [Google Scholar] [CrossRef]
- Glanville, P.; Fridlyand, A.; Sutherland, B.; Liszka, M.; Zhao, Y.; Bingham, L.; Jorgensen, K. Impact of hydrogen/natural gas blends on partially premixed combustion equipment: NOx emission and operational performance. Energies 2022, 15, 1706. [Google Scholar] [CrossRef]
- Tan, K.; Mahajan, D.; Venkatesh, T.A. Computational fluid dynamic modeling of methane-hydrogen mixture transportation in pipelines: Estimating energy costs. MRS Adv. 2022, 7, 388–393. [Google Scholar] [CrossRef]
- Leicher, J.; Schaffert, J.; Cigarida, H.; Tali, E.; Burmeister, F.; Giese, A.; Albus, R.; Görner, K.; Carpentier, S.; Milin, P.; et al. The impact of hydrogen admixture into natural gas on residential and commercial gas appliances. Energies 2022, 15, 777. [Google Scholar] [CrossRef]
- Neacsa, A.; Eparu, C.N.; Panaitescu, C.; Stoica, D.B.; Ionete, B.; Prundurel, A.; Gal, S. Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society. Energies 2023, 16, 5751. [Google Scholar] [CrossRef]
- Couturier, M. Natural Gas + H2 Blend Calculation. 2023. Available online: https://www.linkedin.com/pulse/natural-gas-h2-blend-calculation-marc-couturier (accessed on 29 September 2023).
- MET Group. Calorific Value of Natural Gas (MJ/M3 AND BTU/SCF). 2021. Available online: https://group.met.com/en/media/energy-insight/calorific-value-of-natural-gas#:~:text=What%20is%20the%20heat%20value,to%201%2C050%20BTU%2FSCF (accessed on 11 October 2023).
- Ali, I.; Basit, M.A. Significance of hydrogen content in fuel combustion. Int. J. Hydrogen Energy 1993, 18, 1009–1011. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 20 November 2023).
- Chang, W.; Cheng, J.; Allaire, J.; Sievert, C.; Schloerke, B.; Xie, Y.; Allen, J.; McPherson, J.; Dipert, A.; Borges, B. Shiny: Web Application Framework for R. R package version 1.8.0.9000. 2023. Available online: https://shiny.posit.co/ (accessed on 20 November 2023).
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020; Available online: https://plotly-r.com (accessed on 20 November 2023).
Symbol | Property | Units |
---|---|---|
t | Gas blend usage time | s |
AmountH2 | Amount of hydrogen in the gas blend | % |
AmountNG | Amount of natural gas in the gas blend | % |
V | Consumption speed of natural gas, hydrogen, and blend | m3/s |
PH2 | Price of hydrogen | EUR/m3 |
PNG | Price of natural gas | EUR/m3 |
CH2 | Cost of hydrogen in the blend | EUR |
CNG | Cost of natural gas in the blend | EUR |
Ctotal | Total cost of the gas blend | EUR |
Volblend | Total volume of the gas blend | m3 |
VolH2 | Volume of hydrogen in the gas blend | m3 |
VolNG | Volume of natural gas in the gas blend | m3 |
HVNG | Heat value of natural gas | MJ/m3 |
HVH2 | Heat value of hydrogen | MJ/m3 |
HVblend | Total heat value of the blend | MJ/m3 |
HVpotential | Potential heat value without hydrogen in the blend | MJ/m3 |
HVmissing | Missing heat value by the addition of hydrogen | MJ/m3 |
ReductionCO2 | CO2 reduction of the gas blend through the addition of hydrogen | % |
Amountadd | Additional gas blend volume required to compensate for the loss of heat value | % |
Voladd | Additional gas blend volume required to compensate for the loss of heat value | m3 |
Volnew | Updated gas blend total volume | m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacepins, A.; Kotovs, D.; Komasilovs, V.; Kviesis, A. Economic Modelling of Mixing Hydrogen with Natural Gas. Processes 2024, 12, 262. https://doi.org/10.3390/pr12020262
Zacepins A, Kotovs D, Komasilovs V, Kviesis A. Economic Modelling of Mixing Hydrogen with Natural Gas. Processes. 2024; 12(2):262. https://doi.org/10.3390/pr12020262
Chicago/Turabian StyleZacepins, Aleksejs, Daniels Kotovs, Vitalijs Komasilovs, and Armands Kviesis. 2024. "Economic Modelling of Mixing Hydrogen with Natural Gas" Processes 12, no. 2: 262. https://doi.org/10.3390/pr12020262