Economic Modelling of Mixing Hydrogen with Natural Gas
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zakaria, Z.; Kamarudin, S.K.; Salehmin, M.N.I.; Ahmad, N.N.R.; Aminuddin, M.A.; Hanapi, I.H.; Osman, S.H.; Mohamad, A.A. Energy scenario in Malaysia: Embarking on the potential use of hydrogen energy. Int. J. Hydrogen Energy 2023, 48, 35685–35707. [Google Scholar] [CrossRef]
- Frigo, G.; Baumann, M.; Hillerbrand, R. Energy and the good life: Capabilities as the foundation of the right to access energy services. J. Hum. Dev. Capab. 2021, 22, 218–248. [Google Scholar] [CrossRef]
- Dogaru, L. The main goals of the fourth industrial revolution. Renewable Energy Perspectives. Procedia Manuf. 2020, 46, 397–401. [Google Scholar] [CrossRef]
- Mukelabai, M.D.; Wijayantha, K.G.U.; Blanchard, R.E. Hydrogen technology adoption analysis in Africa using a Doughnut-PESTLE hydrogen model (DPHM). Int. J. Hydrogen Energy 2022, 47, 31521–31540. [Google Scholar] [CrossRef]
- Jaramillo, L.B.; Weidlich, A. Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads. Appl. Energy 2016, 169, 857–865. [Google Scholar] [CrossRef]
- Salvi, B.L.; Subramanian, K.A. Sustainable development of road transportation sector using hydrogen energy system. Renew. Sustain. Energy Rev. 2015, 51, 1132–1155. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, H.; Wang, J.; Xue, Q.; Ren, B.; Yang, F. The production and application of hydrogen in steel industry. Int. J. Hydrogen Energy 2021, 46, 10548–10569. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z.; Mohammad, M.; Narayanan, B.; Sopian, K. Renewable hydrogen economy in Asia—Opportunities and challenges: An overview. Renew. Sustain. Energy Rev. 2014, 30, 743–757. [Google Scholar] [CrossRef]
- Ehret, O.; Bonhoff, K. Hydrogen as a fuel and energy storage: Success factors for the German Energiewende. Int. J. Hydrogen Energy 2015, 40, 5526–5533. [Google Scholar] [CrossRef]
- Ge, Y.; Han, J.; Zhu, X.; Zhu, W.; Yang, J. A combined cooling, heating and power system with energy storage of waste heat to hydrogen. Appl. Therm. Eng. 2023, 225, 120224. [Google Scholar] [CrossRef]
- Ebrahimi-Moghadam, A.; Farzaneh-Gord, M. Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production. Appl. Energy 2022, 309, 118453. [Google Scholar] [CrossRef]
- Ausfelder, F.; Bazzanella, A. Hydrogen in the chemical industry. In Hydrogen Science and Engineering: Materials, Processes, Systems and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 19–40. [Google Scholar]
- Rambhujun, N.; Salman, M.S.; Wang, T.; Pratthana, C.; Sapkota, P.; Costalin, M.; Lai, Q.; Aguey-Zinsou, K.F. Renewable hydrogen for the chemical industry. MRS Energy Sustain. 2020, 7, E33. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. A review on potential use of hydrogen in aviation applications. Int. J. Sustain. Aviat. 2016, 2, 74–100. [Google Scholar] [CrossRef]
- Li, B.; Roche, R.; Paire, D.; Miraoui, A. Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation. Appl. Energy 2017, 205, 1244–1259. [Google Scholar] [CrossRef]
- Ustolin, F.; Campari, A.; Taccani, R. An extensive review of liquid hydrogen in transportation with focus on the maritime sector. J. Mar. Sci. Eng. 2022, 10, 1222. [Google Scholar] [CrossRef]
- Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 2021, 14, 815–843. [Google Scholar] [CrossRef]
- Irimia-Vladu, M.; Kanbur, Y.; Camaioni, F.; Coppola, M.E.; Yumusak, C.; Irimia, C.V.; Vlad, A.; Operamolla, A.; Farinola, G.M.; Suranna, G.P.; et al. Stability of selected hydrogen bonded semiconductors in organic electronic devices. Chem. Mater. 2019, 31, 6315–6346. [Google Scholar] [CrossRef]
- Penev, M.; Zuboy, J.; Hunter, C. Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations. Transp. Res. Part D Transp. Environ. 2019, 77, 92–105. [Google Scholar] [CrossRef]
- AlShafi, M.; Bicer, Y. Assessment of various energy storage methods for implementation in hot and arid climates. Energy Storage 2020, 2, e191. [Google Scholar] [CrossRef]
- Vidas, L.; Castro, R.; Pires, A. A review of the impact of hydrogen integration in natural gas distribution networks and electric smart grids. Energies 2022, 15, 3160. [Google Scholar] [CrossRef]
- Ohaeri, E.; Eduok, U.; Szpunar, J. Hydrogen related degradation in pipeline steel: A review. Int. J. Hydrogen Energy 2018, 43, 14584–14617. [Google Scholar] [CrossRef]
- Mahajan, D.; Tan, K.; Venkatesh, T.; Kileti, P.; Clayton, C.R. Hydrogen blending in gas pipeline networks—A review. Energies 2022, 15, 3582. [Google Scholar] [CrossRef]
- Kappes, M.A.; Perez, T. Hydrogen blending in existing natural gas transmission pipelines: A review of hydrogen embrittlement, governing codes, and life prediction methods. Corros. Rev. 2023, 41, 319–347. [Google Scholar] [CrossRef]
- Neacsa, A.; Eparu, C.N.; Stoica, D.B. Hydrogen–natural gas blending in distribution systems—An energy, economic, and environmental assessment. Energies 2022, 15, 6143. [Google Scholar] [CrossRef]
- Glanville, P.; Fridlyand, A.; Sutherland, B.; Liszka, M.; Zhao, Y.; Bingham, L.; Jorgensen, K. Impact of hydrogen/natural gas blends on partially premixed combustion equipment: NOx emission and operational performance. Energies 2022, 15, 1706. [Google Scholar] [CrossRef]
- Tan, K.; Mahajan, D.; Venkatesh, T.A. Computational fluid dynamic modeling of methane-hydrogen mixture transportation in pipelines: Estimating energy costs. MRS Adv. 2022, 7, 388–393. [Google Scholar] [CrossRef]
- Leicher, J.; Schaffert, J.; Cigarida, H.; Tali, E.; Burmeister, F.; Giese, A.; Albus, R.; Görner, K.; Carpentier, S.; Milin, P.; et al. The impact of hydrogen admixture into natural gas on residential and commercial gas appliances. Energies 2022, 15, 777. [Google Scholar] [CrossRef]
- Neacsa, A.; Eparu, C.N.; Panaitescu, C.; Stoica, D.B.; Ionete, B.; Prundurel, A.; Gal, S. Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society. Energies 2023, 16, 5751. [Google Scholar] [CrossRef]
- Couturier, M. Natural Gas + H2 Blend Calculation. 2023. Available online: https://www.linkedin.com/pulse/natural-gas-h2-blend-calculation-marc-couturier (accessed on 29 September 2023).
- MET Group. Calorific Value of Natural Gas (MJ/M3 AND BTU/SCF). 2021. Available online: https://group.met.com/en/media/energy-insight/calorific-value-of-natural-gas#:~:text=What%20is%20the%20heat%20value,to%201%2C050%20BTU%2FSCF (accessed on 11 October 2023).
- Ali, I.; Basit, M.A. Significance of hydrogen content in fuel combustion. Int. J. Hydrogen Energy 1993, 18, 1009–1011. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 20 November 2023).
- Chang, W.; Cheng, J.; Allaire, J.; Sievert, C.; Schloerke, B.; Xie, Y.; Allen, J.; McPherson, J.; Dipert, A.; Borges, B. Shiny: Web Application Framework for R. R package version 1.8.0.9000. 2023. Available online: https://shiny.posit.co/ (accessed on 20 November 2023).
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020; Available online: https://plotly-r.com (accessed on 20 November 2023).
Symbol | Property | Units |
---|---|---|
t | Gas blend usage time | s |
AmountH2 | Amount of hydrogen in the gas blend | % |
AmountNG | Amount of natural gas in the gas blend | % |
V | Consumption speed of natural gas, hydrogen, and blend | m3/s |
PH2 | Price of hydrogen | EUR/m3 |
PNG | Price of natural gas | EUR/m3 |
CH2 | Cost of hydrogen in the blend | EUR |
CNG | Cost of natural gas in the blend | EUR |
Ctotal | Total cost of the gas blend | EUR |
Volblend | Total volume of the gas blend | m3 |
VolH2 | Volume of hydrogen in the gas blend | m3 |
VolNG | Volume of natural gas in the gas blend | m3 |
HVNG | Heat value of natural gas | MJ/m3 |
HVH2 | Heat value of hydrogen | MJ/m3 |
HVblend | Total heat value of the blend | MJ/m3 |
HVpotential | Potential heat value without hydrogen in the blend | MJ/m3 |
HVmissing | Missing heat value by the addition of hydrogen | MJ/m3 |
ReductionCO2 | CO2 reduction of the gas blend through the addition of hydrogen | % |
Amountadd | Additional gas blend volume required to compensate for the loss of heat value | % |
Voladd | Additional gas blend volume required to compensate for the loss of heat value | m3 |
Volnew | Updated gas blend total volume | m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacepins, A.; Kotovs, D.; Komasilovs, V.; Kviesis, A. Economic Modelling of Mixing Hydrogen with Natural Gas. Processes 2024, 12, 262. https://doi.org/10.3390/pr12020262
Zacepins A, Kotovs D, Komasilovs V, Kviesis A. Economic Modelling of Mixing Hydrogen with Natural Gas. Processes. 2024; 12(2):262. https://doi.org/10.3390/pr12020262
Chicago/Turabian StyleZacepins, Aleksejs, Daniels Kotovs, Vitalijs Komasilovs, and Armands Kviesis. 2024. "Economic Modelling of Mixing Hydrogen with Natural Gas" Processes 12, no. 2: 262. https://doi.org/10.3390/pr12020262
APA StyleZacepins, A., Kotovs, D., Komasilovs, V., & Kviesis, A. (2024). Economic Modelling of Mixing Hydrogen with Natural Gas. Processes, 12(2), 262. https://doi.org/10.3390/pr12020262