Experimental Study of a Bionic Porous Media Evaporative Radiator Inspired by Leaf Transpiration: Exploring Energy Change Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Description
2.2. Experimental Setup
- T1: located in the porous medium in front of the cooled module.
- T2: located in the porous medium behind the cooled module.
- T3: positioned between the evaporative heater and the copper block.
- T4: positioned between the cooled device and the porous medium.
2.3. Theoretical Model
2.4. Numerical Calculation and Comparison of Results
- The thermal conductivity of the solid phase in the porous media (λs) is 0.2 W/(m∙K).
- The heating power applied to the upper surface (qw) is 1200 W/m2.
- The porosity of the material (ϕ) is 0.4.
- The chosen mass flow rates correspond to experiments conducted with 1 mm porous media.
2.5. Course of the Experiment and Processing of Data
- Lower surface temperature of the cooled heating plate (T4,60, T4,62.5, T4,65, T4,67.5, and T4,70).
- Inlet temperature of the cooling medium (T1,60, T1,62.5, T1,65, T1,67.5, and T1,70).
- Outlet temperature of the cooling medium (T2,60, T2,62.5, T2,65, T2,67.5, and T2,70).
- Evaporation temperature (T3,60, T3,62.5, T3,65, T3,67.5, and T3,70).
- Mass of the cooling medium recorded by the analytical balance (M60, M62.5, M65, M67.5, and M70).
- is the mass flow rate of the cooling medium (g/h);
- is the constant-pressure specific heat capacity of water, taking the value of ;
- and are the inlet and outlet temperatures of the cooling medium, respectively.
3. Results and Discussion
3.1. Different Evaporation Temperatures
3.2. Different Porous Medium Thicknesses
3.3. Porous Media with Different Porosities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Hydraulic diameter (mm) | |
Brinkman term correction factor | |
Convection heat transfer coefficient (W/m2·K) | |
Volume convection heat transfer coefficient (W/m3·K) | |
Permeability of porous media | |
Mass flow (g/h) | |
Nu | Nusselt number |
Pressure (Pa) | |
Heat flux (W/m2) | |
Re | Reynolds number |
Temperature (K) | |
Flow velocity in the x-direction (m/s) | |
Flow velocity in the y-direction (m/s) | |
Velocity (m/s) | |
Greek Letters | |
thermal conductivity (W/m·K) | |
dynamic viscosity (N·s/m2) | |
density (kg/m3) | |
porosity | |
Subscripts | |
1,2,3,4 | Temperature point |
60,62.5,65,67.5,70 | Evaporation plate’s temperature |
eff | Equivalent values for fluid and solid domains |
f | Fluid domain of porous media |
s | Solid domain of porous media |
Abbreviation | |
PV | photovoltaic |
PMMA | polymethyl methacrylate |
REV | representative elementary volume |
RMSD | root mean square deviation |
References
- Smets, A.H.M.; Jäger, K.; Isabella, O.; van Swaaij, R.; Zeman, M. Solar Energy. In The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems; Cambridge UIT Cambridge Ltd.: Cambridge, UK, 2016. [Google Scholar]
- Hasan, A.; Sarwar, J.; Shah, A.H. Concentrated Photovoltaic: A Review of Thermal Aspects, Challenges and Opportunities. Renew. Sustain. Energy Rev. 2018, 94, 835–852. [Google Scholar] [CrossRef]
- Reddy, S.R.; Ebadian, M.A.; Lin, C.-X. A Review of PV–T Systems: Thermal Management and Efficiency with Single Phase Cooling. Int. J. Heat Mass Transf. 2015, 91, 861–871. [Google Scholar] [CrossRef]
- Siecker, J.; Kusakana, K.; Numbi, B. A Review of Solar Photovoltaic Systems Cooling Technologies. Renew. Sustain. Energy Rev. 2017, 79, 192–203. [Google Scholar] [CrossRef]
- Sutanto, B.; Indartono, Y.S.; Wijayanta, A.T.; Iacovides, H. Enhancing the Performance of Floating Photovoltaic System by Using Thermosiphon Cooling Method: Numerical and Experimental Analyses. Int. J. Therm. Sci. 2022, 180, 107727. [Google Scholar] [CrossRef]
- Al-Lami, H.; Al-Mayyahi, N.N.; Al-Yasiri, Q.; Ali, R.; Alshara, A. Performance Enhancement of Photovoltaic Module Using Finned Phase Change Material Panel: An Experimental Study under Iraq Hot Climate Conditions. Energy Sources Part Recovery Util. Environ. Eff. 2022, 44, 6886–6897. [Google Scholar] [CrossRef]
- Zou, Z.; Yan, W.; Gong, H.; Wang, Y.; Shao, J. Quantifying the Performance Advantage of the Novel Passive Air Cooling System for PV Array and System Structure Optimization. Appl. Therm. Eng. 2019, 149, 899–908. [Google Scholar]
- Parkunam, N.; Pandiyan, L.; Navaneethakrishnan, G.; Arul, S.; Vijayan, V. Experimental Analysis on Passive Cooling of Flat Photovoltaic Panel with Heat Sink and Wick Structure. Energy Sources Part-Recovery Util. Environ. Eff. 2020, 42, 653–663. [Google Scholar]
- Agyekum, E.B.; PraveenKumar, S.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E. Effect of Dual Surface Cooling of Solar Photovoltaic Panel on the Efficiency of the Module: Experimental Investigation. Heliyon 2021, 7, e07920. [Google Scholar] [CrossRef]
- Lebbi, M.; Touafek, K.; Benchatti, A.; Boutina, L.; Khelifa, A.; Baissi, M.T.; Hassani, S. Energy Performance Improvement of a New Hybrid PV/T Bi-Fluid System Using Active Cooling and Self-Cleaning: Experimental Study. Appl. Therm. Eng. 2021, 182, 116033. [Google Scholar] [CrossRef]
- Kane, A.; Verma, V.; Singh, B. Optimization of Thermoelectric Cooling Technology for an Active Cooling of Photovoltaic Panel. Renew. Sustain. Energy Rev. 2017, 75, 1295–1305. [Google Scholar] [CrossRef]
- Metwally, H.; Mahmoud, N.; Ezzat, M.; Aboelsoud, W. Numerical Investigation of Photovoltaic Hybrid Cooling System Performance Using the Thermoelectric Generator and RT25 Phase Change Material. J. Energy Storage 2021, 42, 103031. [Google Scholar] [CrossRef]
- Akal, D.; Türk, S. Increasing Energy and Exergy Efficiency in Photovoltaic Panels by Reducing the Surface Temperature with Thermoelectric Generators. Energy Sources Part Recovery Util. Environ. Eff. 2022, 44, 4062–4082. [Google Scholar] [CrossRef]
- Emara, K.; Aliwa, H.; Abdellatif, O.E.; Abd El-hameed, H. Experimental Investigation for a Hybrid Aluminum Oxide Nanofluid-Phase Change Material Photovoltaic Thermal System Based on Outdoor Test Conditions. J. Energy Storage 2022, 50, 104261. [Google Scholar] [CrossRef]
- Bilen, K.; Erdoğan, İ. Effects of Cooling on Performance of Photovoltaic/Thermal (PV/T) Solar Panels: A Comprehensive Review. Sol. Energy 2023, 262, 111829. [Google Scholar] [CrossRef]
- Nižetić, S.; Giama, E.; Papadopoulos, A. Comprehensive Analysis and General Economic-Environmental Evaluation of Cooling Techniques for Photovoltaic Panels, Part II: Active Cooling Techniques. Energy Convers. Manag. 2018, 155, 301–323. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Li, M.; Deng, S.; An, Q.; Wang, F. Performance Analysis of Passive Cooling for Photovoltaic Modules and Estimation of Energy-Saving Potential. Sol. Energy 2019, 181, 70–82. [Google Scholar] [CrossRef]
- Nižetić, S.; Papadopoulos, A.; Giama, E. Comprehensive Analysis and General Economic-Environmental Evaluation of Cooling Techniques for Photovoltaic Panels, Part I: Passive Cooling Techniques. Energy Convers. Manag. 2017, 149, 334–354. [Google Scholar] [CrossRef]
- Abdulmunem, A.R.; Samin, P.M.; Rahman, H.A.; Hussien, H.A.; Mazali, I.I. Enhancing PV Cell’s Electrical Efficiency Using Phase Change Material with Copper Foam Matrix and Multi-Walled Carbon Nanotubes as Passive Cooling Method. Renew. Energy 2020, 160, 663–675. [Google Scholar] [CrossRef]
- Alktranee, M.; Péter, B. Energy and Exergy Analysis for Photovoltaic Modules Cooled by Evaporative Cooling Techniques. Energy Rep. 2023, 9, 122–132. [Google Scholar] [CrossRef]
- Haidar, Z.A.; Orfi, J.; Kaneesamkandi, Z. Experimental Investigation of Evaporative Cooling for Enhancing Photovoltaic Panels Efficiency. Results Phys. 2018, 11, 690–697. [Google Scholar] [CrossRef]
- Bahaidarah, H.; Subhan, A.; Gandhidasan, P.; Rehman, S. Performance Evaluation of a PV (Photovoltaic) Module by Back Surface Water Cooling for Hot Climatic Conditions. Energy 2013, 59, 445–453. [Google Scholar] [CrossRef]
- Mojumder, J.C.; Chong, W.T.; Ong, H.C.; Leong, K. An Experimental Investigation on Performance Analysis of Air Type Photovoltaic Thermal Collector System Integrated with Cooling Fins Design. Energy Build. 2016, 130, 272–285. [Google Scholar] [CrossRef]
- Shahsavar, A.; Ameri, M. Experimental Investigation and Modeling of a Direct-Coupled PV/T Air Collector. Sol. Energy 2010, 84, 1938–1958. [Google Scholar] [CrossRef]
- Hussain, F.; Othman, M.; Yatim, B.; Ruslan, H.; Sopian, K.; Ibarahim, Z. A Study of PV/T Collector with Honeycomb Heat Exchanger. Am. Inst. Phys. 2013, 1571, 10–16. [Google Scholar]
- Kaiser, A.; Zamora, B.; Mazón, R.; García, J.; Vera, F. Experimental Study of Cooling BIPV Modules by Forced Convection in the Air Channel. Appl. Energy 2014, 135, 88–97. [Google Scholar] [CrossRef]
- Ebaid, M.S.; Ghrair, A.M.; Al-Busoul, M. Experimental Investigation of Cooling Photovoltaic (PV) Panels Using (TiO2) Nanofluid in Water-Polyethylene Glycol Mixture and (Al2O3) Nanofluid in Water-Cetyltrimethylammonium Bromide Mixture. Energy Convers. Manag. 2018, 155, 324–343. [Google Scholar] [CrossRef]
- Feng, J.; Huang, J.; Ling, Z.; Fang, X.; Zhang, Z. Performance Enhancement of a Photovoltaic Module Using Phase Change Material Nanoemulsion as a Novel Cooling Fluid. Sol. Energy Mater. Sol. Cells 2021, 225, 111060. [Google Scholar] [CrossRef]
- Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Effects of Different Fin Parameters on Temperature and Efficiency for Cooling of Photovoltaic Panels under Natural Convection. Sol. Energy 2019, 188, 484–494. [Google Scholar] [CrossRef]
- Hernandez-Perez, J.; Carrillo, J.; Bassam, A.; Flota-Banuelos, M.; Patino-Lopez, L. Thermal Performance of a Discontinuous Finned Heatsink Profile for PV Passive Cooling. Appl. Therm. Eng. 2021, 184, 116238. [Google Scholar] [CrossRef]
- Kazem, H.A.; Al-Waeli, A.A.; Chaichan, M.T.; Sopian, K.; Al-Amiery, A.A. Enhancement of Photovoltaic Module Performance Using Passive Cooling (Fins): A Comprehensive Review. Case Stud. Therm. Eng. 2023, 49, 103316. [Google Scholar] [CrossRef]
- Chaurasia, H.; Reddy, K.S. Integrated Model for Comprehensive Performance Investigation of Solar Concentrated Photovoltaic-Thermal System Embedded with Microchannel Heat Sinks. Energy Technol. 2024, 12, 2400005. [Google Scholar] [CrossRef]
- Refaey, H.; Wahba, M.; Abdelrahman, H.; Moawad, M.; Berbish, N. Experimental Study on the Performance Enhancement of the Photovoltaic Cells by Using Various Nano-Enhanced PCMs. J. Inst. Eng. India Ser. C 2021, 102, 553–562. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.; Huang, M.; Norton, B. Evaluation of Phase Change Materials for Thermal Regulation Enhancement of Building Integrated Photovoltaics. Sol. Energy 2010, 84, 1601–1612. [Google Scholar] [CrossRef]
- Seo, J.; Kim, W. Plant Leaf Inspired Evaporative Heat Sink with a Binary Porous Structure. Int. J. Heat Mass Transf. 2020, 160, 120171. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X. Performance Improvements of Microchannel Heat Sink Using Koch Fractal Structure and Nanofluids; Elsevier: Amsterdam, The Netherlands, 2023; Volume 50, pp. 1222–1231. [Google Scholar]
- Bianco, N.; Fragnito, A.; Iasiello, M.; Mauro, G.M. Design of PCM-Based Heat Sinks through Topology Optimization; IOP Publishing: Bristol, UK, 2023; Volume 2509, p. 012001. [Google Scholar]
- Bianco, N.; Cherella, N.; Fragnito, A.; Iasiello, M.; Mauro, G.M. Multi-Material Topology Optimization of Innovative Microchannel Heat Sinks Equipped with Metal Foams. Int. J. Heat Mass Transf. 2024, 222, 125201. [Google Scholar] [CrossRef]
- Rajput, P.; Malvoni, M.; Manoj Kumar, N.; Sastry, O.; Jayakumar, A. Operational Performance and Degradation Influenced Life Cycle Environmental–Economic Metrics of Mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-Arid Climates. Sustainability 2020, 12, 1075. [Google Scholar] [CrossRef]
- Hwang, K.S.; Jun, J.H.; Lee, W.K. Fixed-Bed Adsorption for Bulk Component System. Non-Equilibrium, Non-Isothermal and Non-Adiabatic Model. Chem. Eng. Sci. 1995, 50, 813–825. [Google Scholar] [CrossRef]
- Vafai, K.; Sozen, M. Analysis of Energy and Momentum Transport for Fluid Flow through a Porous Bed. J. Heat Transf. 1990, 112, 690–699. [Google Scholar] [CrossRef]
- Soltani, L.A.; Shivanian, E.; Ezzati, R. Convection–Radiation Heat Transfer in Solar Heat Exchangers Filled with a Porous Medium: Exact and Shooting Homotopy Analysis Solution. Appl. Therm. Eng. 2016, 103, 537–542. [Google Scholar] [CrossRef]
- Vafai, K.; Tien, C.L. Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media. Int. J. Heat Mass Transf. 1981, 24, 195–203. [Google Scholar] [CrossRef]
- Hunt, M.; Tien, C. Non-Darcian Convection in Cylindrical Packed Beds. J. Heat Transf. 1988, 110, 378–384. [Google Scholar] [CrossRef]
- Chen, W.; Liu, W. Numerical Analysis of Heat Transfer in a Composite Wall Solar-Collector System with a Porous Absorber. Appl. Energy 2004, 78, 137–149. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Liu, Z. Criterion for Local Thermal Equilibrium in Forced Convection Flow through Porous Media. J. Porous Media 2009, 12, 1103–1111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Z.; Wang, X.; Ren, J.; Wang, Q.; Zhao, L. Experimental Study of a Bionic Porous Media Evaporative Radiator Inspired by Leaf Transpiration: Exploring Energy Change Processes. Processes 2024, 12, 2745. https://doi.org/10.3390/pr12122745
Qian Z, Wang X, Ren J, Wang Q, Zhao L. Experimental Study of a Bionic Porous Media Evaporative Radiator Inspired by Leaf Transpiration: Exploring Energy Change Processes. Processes. 2024; 12(12):2745. https://doi.org/10.3390/pr12122745
Chicago/Turabian StyleQian, Zuoqin, Xinyu Wang, Jie Ren, Qiang Wang, and Lumei Zhao. 2024. "Experimental Study of a Bionic Porous Media Evaporative Radiator Inspired by Leaf Transpiration: Exploring Energy Change Processes" Processes 12, no. 12: 2745. https://doi.org/10.3390/pr12122745
APA StyleQian, Z., Wang, X., Ren, J., Wang, Q., & Zhao, L. (2024). Experimental Study of a Bionic Porous Media Evaporative Radiator Inspired by Leaf Transpiration: Exploring Energy Change Processes. Processes, 12(12), 2745. https://doi.org/10.3390/pr12122745