Thermochemical Conversion of Biomass into 2nd Generation Biofuel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kamperidou, V.; Terzopoulou, P.; Barboutis, I. Marginal lands providing tree-crop biomass as feedstock for solid biofuels. Biofuels Bioproducsts Biorefining 2021, 15, 1395–1405. [Google Scholar] [CrossRef]
- IEA. Bioenergy Annual Report. 2022. Available online: https://www.ieabioenergy.com/wp-content/uploads/2023/05/Annual-Report-2022.pdf (accessed on 12 July 2024).
- Informačné Listy o Európskej Únii. Available online: https://www.europarl.europa.eu/erpl-app-public/factsheets/pdf/sk/FTU_2.4.9.pdf (accessed on 30 August 2024).
- Bioenergy & Biofuels. Available online: https://www.irena.org/Energy-Transition/Technology/Bioenergy-and-biofuels (accessed on 18 June 2024).
- Ján, G. Konverzia Rastlinnej Biomasy na Energiu (Conversion of Plant Biomass to Energy). Naše Pole, 5 November 2020. ISSN 1335-2466. Available online: https://nasepole.sk/konverzia-rastlinnej-biomasy-na-energiu/ (accessed on 4 June 2024).
- WBA. Global Bioenergy Statistics. 2023. Available online: https://www.worldbioenergy.org/uploads/231219%20GBS%20Report.pdf (accessed on 7 June 2024).
- WBA. Global Bioenergy Statistics. 2022. Available online: https://www.worldbioenergy.org/uploads/221223%20WBA%20GBS%202022.pdf (accessed on 9 July 2024).
- Ondro, T.; Vitázek, I.; Húlan, T.; Lawson, M.; Csáki, Š. Non-isothermal kinetic analysis of the thermal decomposition of spruce wood in air atmosphere. Res. Agric. Eng. 2018, 64, 41–46. [Google Scholar] [CrossRef]
- Piteľ, J.; Mižáková, J.; Hošovský, A. Biomass combustion control and stabilization using low-cost sensors. Adv. Mech. Eng. 2013, 5, 685157. [Google Scholar] [CrossRef]
- Mižáková, J.; Piteľ, J.; Hošovský, A.; Kolarčík, M.; Ratnayake, M. Using special filter with membership function in biomass combustion process control. Appl. Sci. 2018, 8, 1279. [Google Scholar] [CrossRef]
- Álvarez, A.; Pizarro, C.; García, R.; Bueno, J.L.; Lavín, A.G. Determination of kinetic parameters for biomass combustion. Bioresour. Technol. 2016, 216, 36–43. [Google Scholar] [CrossRef]
- Khovanskyi, S.; Pavlenko, I.; Pitel, J.; Mizakova, J.; Ochowiak, M.; Grechka, I. Solving the coupled aerodynamic and thermal problem for modeling the air distribution devices with perforated plates. Energies 2019, 12, 3488. [Google Scholar] [CrossRef]
- Holubčík, M.; Jandačka, J.; Kantová, N. Impact of the wood geometric parameters on the particulate matter production in small heat source. In Proceedings of the AIP Conference, Ho Chi Minh, Vietnam, 29–30 April 2018. [Google Scholar]
- Safi, M.J.; Mishra, I.M.; Prasad, B. Global degradation kinetics of pine needles in air. Thermochim. Acta 2004, 412, 155–162. [Google Scholar] [CrossRef]
- Orfão, J.J.M.; Antunes, F.J.A.; Figueiredo, J.L. Pyrolysis kinetics of lignocellulosic materials—Three independent reactions model. Fuel 1999, 78, 349–358. [Google Scholar] [CrossRef]
- Vitázek, I.; Ondro, T.; Sunitrová, I.; Majdan, R.; Šotnar, M. Thermoanalytical investigation of selected fuel during isothermal heating. Agron. Res. 2019, 17, 2455–2459. [Google Scholar] [CrossRef]
- Bilbao, R.; Mastral, J.F.; Aldea, M.E.; Ceamanos, J. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. J. Anal. Appl. Pyrol. 1997, 39, 53–64. [Google Scholar] [CrossRef]
- Fang, M.X.; Shen, D.K.; Li, Y.X.; Yu, C.J.; Luo, Z.Y.; Cen, K.F. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J. Anal. Appl. Pyrol. 2006, 77, 22–27. [Google Scholar] [CrossRef]
- Shen, D.K.; Gu, S.; Luo, K.H.; Bridgwater, A.V.; Fang, M.X. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 2009, 88, 1024–1030. [Google Scholar] [CrossRef]
- Liu, N.A.; Fan, W.; Dobashi, R.; Huang, L. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. J. Anal. Appl. Pyrol. 2002, 62, 303–325. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, B.; Ji, Y.; Xu, F.; Zong, P.; Zhang, J.; Tian, Y. Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis. Bioresour. Technol. 2019, 278, 287–295. [Google Scholar] [CrossRef]
- Crestini, C.; Lange, H.; Sette, M.; Argyropoulos, D.S. On the structure of softwood kraft lignin. Green Chem. 2017, 19, 4104–4121. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
- Brodin, I.; Sjöholm, E.; Gallerstedt, G. The behavior of kraft lignin during thermal treatment. J. Anal. Appl. Pyrolysis 2010, 87, 70–77. [Google Scholar] [CrossRef]
- European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; Ithaka Institute for Carbon Strategies: Arbaz, Switzerland, 2012; Version 8.2E of 19th April 2019. [CrossRef]
- Chargrow. How to Use Biochar: Where It Should and Should Not Be Placed. 2018. Available online: https://char-grow.com/how-to-use-biochar (accessed on 26 June 2024).
- Schmidt, H.P.; Wilson, K. The 55 Uses of Biochar; The Biochar Journal: Arbaz, Switzerland, 2014; ISSN 2297-1114. Available online: www.biochar-journal.org/en/ct/2 (accessed on 4 June 2024).
- Zheng, W.; Guo, M.; Chow, T.; Bennet, D.N.; Rajagopalan, N. Sorption properties of greenwaste biochar for two triazine pesticides. J. Hazard. Mater. 2010, 181, 121–126, ISSN 0304-3894. [Google Scholar] [CrossRef]
- Day, D.; Evans, R.J.; Lee, J.W.; Reicosky, D. Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 2005, 30, 2558–2579. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387, ISSN 1540-9309. [Google Scholar] [CrossRef]
- Hansson, K.-M.; Samuelsson, J.; Tullin, C.; Åmand, L.-E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust. Flame 2004, 137, 265–277. [Google Scholar] [CrossRef]
- Wang, X.; Si, J.; Tan, H.; Ma, L.; Pourkashanian, M.; Xu, T. Nitrogen, sulfur, and chlorine transformations during the pyrolysis of straw. Energy Fuels 2010, 24, 5215–5221. [Google Scholar] [CrossRef]
- Leijenhorst, E.J.; Wolters, W.; Van De Beld, L.; Prins, W. Inorganic element transfer from biomass to fast pyrolysis oil: Review and experiments. Fuel Process. Technol. 2016, 149, 96–111. [Google Scholar] [CrossRef]
- Czajczyńska, D.; Nannou, T.; Anguilano, L.; Krzyżyńska, R.; Ghazal, H.; Spencer, N.; Jouhara, H. Potentials of pyrolysis processes in the waste management sector. Energy Procedia 2017, 123, 387–394. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Zheng, S.; Jiang, A. Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process. Energy 2018, 153, 149–158. [Google Scholar] [CrossRef]
- Benedetti, V.; Patuzzi, F.; Baratieri, M. Gasification Char as a Potential Substitute of Activated Carbon in Adsorption Applications. Energy Procedia 2017, 105, 712–717. [Google Scholar] [CrossRef]
- Lu, P.; Huang, Q.; Chi, Y.; Yan, J. Preparation of high catalytic activity biochar from biomass waste for tar conversion. J. Anal. Appl. Pyrolysis 2017, 127, 47–56. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014, 16, 950–963. [Google Scholar] [CrossRef]
- European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; Carbon Standards International: Frick, Switzerland, 2023; Version 10.3 from 5 April 2022; Available online: https://www.european-biochar.org (accessed on 2 July 2024).
- Demo, M.; Húska, D.; Tóthová, M. Vŕba (Salix L.) Ako Zdroj Biomasy pre Energetické Účely, 2nd ed.; Slovenská Poľnohospodárska Univerzita v Nitre: Nitra, Slovakia, 2013; ISBN 978-80-552-1021-6. [Google Scholar]
- STN ISO 1171: 2003 (44 1378); Tuhé Palivá. Stanovenie Popola. Slovenský Ústav Technickej Normalizácie: Bratislava, Slovakia, 2003.
- Fahmy, T.Y.A.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass pyrolysis: Past, present, and future. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- STN EN 15148: 2010 (65 7411); Tuhé Biopalivá. Stanovenie Obsahu Prchavých Látok. Slovenský Ústav Technickej Normalizácie: Bratislava, Slovakia, 2010.
- STN EN 14775: 2010 (65 7408); Tuhé Biopalivá. Stanovenie Obsahu Popola. Slovenský Ústav Technickej Normalizácie: Bratislava, Slovakia, 2010.
- Farah, A.; Abdul, S.; Abd Razak, S.; Santhana, K.; Haspina, S.; Mohd Nasrullah, A.W. Biochar production techniques utilizing biomass waste-derived materials and environmental applications—A review. J. Hazard. Mater. Adv. 2022, 7, 100134, ISSN 2772-4166. [Google Scholar] [CrossRef]
- Kwapinski, W.; Byrne, C.M.P.; Kryachko, E.; Wolfram, P.; Adley, C.; Leahy, J.J.; Novotny, E.H.; Hayes, M.H. Biochar from Biomass and Waste. Waste Biomass 2010, 1, 177–189. [Google Scholar] [CrossRef]
- Maniraj, J.; Ramesh, M.; Kumar, S.G.; Sahayaraj, A.F. Introduction of Biochar: Sources, Composition, and Recent Updates. In Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2023; ISBN 978-981-99-5238-0. [Google Scholar] [CrossRef]
- Bird, M.; Keitel, K.; Meredith, W. Analysis of biochars for C, H, N, O, and S by elementar analyser. In Biochar—A Guide to Analytical Methods; CSIRO Publishing: Clayton South, Australia, 2017; pp. 39–50. ISBN 9781486305117. [Google Scholar]
- Mašek, O.; Budarin, V.; Gronnow, M.; Crombie, K.; Brownsort, P.; Fitzpatrick, E.; Hurst, P. Microwave and Slow Pyrolysis Biochar—Comparison of Physical and Functional Properties. J. Anal. Appl. Pyrolysis 2012, 100, 41–48. [Google Scholar] [CrossRef]
- Rasa, K.; Heikkinen, J.; Hannula, M.; Arstila, K.; Kulju, S.; Hyväluoma, J. How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenergy 2018, 119, 346–353, ISSN 0961-9534. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, X.; Alamu, S.O.; Brown, K.; Lee, S.W.; Kang, D.-H. Qualities and Quantities of Poultry Litter Biochar Characterization and Investigation. Energies 2024, 17, 2885. [Google Scholar] [CrossRef]
- Vitázek, I.; Šotnar, M.; Hrehová, S.; Darnadyová, K.; Mareček, J. Isothermal Kinetic Analysis of the Thermal Decomposition of Wood Chips from an Apple Tree. Processes 2021, 2, 195. [Google Scholar] [CrossRef]
- Lokwahwar, P.; Yulin, H.; Greg, N. Critical review of the role of ash content and composition in biomass pyrolysis. Front. Fuels 2024, 2, 1378361. [Google Scholar] [CrossRef]
Biomass | N * (mass. %) | S * (mass. %) | Cl * (mass. %) |
---|---|---|---|
Wheat straw | 0.98 | 0.07 | 0.450 |
Corn husks | 0.42 | 0.04 | 0.426 |
Sunflower | 0.5 | 0.1 | 0.856 |
Cotton stalks | 0.92 | 0.11 | 0.159 |
Wood from fruit trees | 0.62 | 0.06 | 0.049 |
Time Interval | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Impact period, minute | 60 | 120 | 60 | 60 | 60 | 60 |
Temperature, °C | 20–105 | 105 | 105–500 | 500 | 500–815 | 815 |
Biomass | Express | Inger | Sven |
---|---|---|---|
Average gas flow [m3/h] | 4.54 | 8.73 | 3.07 |
Production of biochar from 1 kg biomass | 0.252 | 0.106 | 0.256 |
Biomass | N % | C % | H % | S % |
---|---|---|---|---|
Sven | 1.3 | 79.3 | 2.6 | 0.2 |
Express | 1.0 | 78.0 | 2.7 | 0.2 |
Inger | 1.0 | 78.3 | 2.7 | 0.3 |
Biomass | Express | Inger | Sven |
---|---|---|---|
Moisture content wet basis, % | 2.001 | 2.428 | 1.674 |
Ash content in dry matter, pps, % | 7.210 | 6.008 | 7.279 |
Volatile matter content in dry matter, phs, % | 92.790 | 93.992 | 92.721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giertl, T.; Vitázek, I.; Gaduš, J.; Kollárik, R.; Przydatek, G. Thermochemical Conversion of Biomass into 2nd Generation Biofuel. Processes 2024, 12, 2658. https://doi.org/10.3390/pr12122658
Giertl T, Vitázek I, Gaduš J, Kollárik R, Przydatek G. Thermochemical Conversion of Biomass into 2nd Generation Biofuel. Processes. 2024; 12(12):2658. https://doi.org/10.3390/pr12122658
Chicago/Turabian StyleGiertl, Tomáš, Ivan Vitázek, Ján Gaduš, Rastislav Kollárik, and Grzegorz Przydatek. 2024. "Thermochemical Conversion of Biomass into 2nd Generation Biofuel" Processes 12, no. 12: 2658. https://doi.org/10.3390/pr12122658
APA StyleGiertl, T., Vitázek, I., Gaduš, J., Kollárik, R., & Przydatek, G. (2024). Thermochemical Conversion of Biomass into 2nd Generation Biofuel. Processes, 12(12), 2658. https://doi.org/10.3390/pr12122658