Deep Learning Integration for Normal Breathing Classification Using a Flexible Fiber Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Stitched Sensor
2.2. Respiration Data Acquisition Protocol
2.3. Classification of Normal Breathing
3. Results
3.1. Characterization of the Stitched Sensor
3.1.1. Stretchability and Sensitivity
3.1.2. Durability
3.2. Measuring Respiration Using Stitched Sensor
3.3. 2D CNN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, Y.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications. Meas. Sci. Technol. 2013, 24, 075104. [Google Scholar] [CrossRef]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321–12325. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Lee, J.E.-Y.; Lee, C. Thin-film PMUTs: A review of over 40 years of research. Microsyst. Nanoeng. 2023, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Lorussi, F.; Scilingo, E.P.; Tesconi, M.; Tognetti, A.; De Rossi, D. Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 372–381. [Google Scholar] [CrossRef]
- Li, Y.; Samad, Y.A.; Taha, T.; Cai, G.; Fu, S.-Y.; Liao, K. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain. Chem. Eng. 2016, 4, 4288–4295. [Google Scholar] [CrossRef]
- Pang, C.; Koo, J.H.; Nguyen, A.; Caves, J.M.; Kim, M.G.; Chortos, A.; Kim, K.; Wang, P.J.; Tok, J.B.H.; Bao, Z. Sensors: Highly Skin-Conformal Microhairy Sensor for Pulse Signal Amplification. Adv. Mater. 2015, 4, 589. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Zhong, W.; Zhao, Q.; Wang, D. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 2014, 6, 1313–1319. [Google Scholar] [CrossRef]
- Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano 2013, 7, 8366–8378. [Google Scholar] [CrossRef]
- Wang, D.; Huang, Y.; Cai, W.; Tian, M.; Liu, P.; Zhang, Y. Functionalized multi-wall carbon nanotubes/silicone rubber composite as capacitive humidity sensor. J. Appl. Polym. Sci. 2014, 131, 11. [Google Scholar] [CrossRef]
- Dias, T. Electronic Textiles: Smart Fabrics and Wearable Technology; Woodhead Publishing: Sawston, UK, 2015. [Google Scholar]
- Choudhry, N.A.; Rasheed, A.; Ahmad, S.; Arnold, L.; Wang, L. Design, development and characterization of textile stitch-based piezoresistive sensors for wearable monitoring. IEEE Sens. J. 2020, 20, 10485–10494. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, L.; Zhao, Y.; Guo, X.; Liu, C.; Liu, P. Highly flexible fabric strain sensor based on graphene nanoplatelet–polyaniline nanocomposites for human gesture recognition. J. Appl. Polym. Sci. 2017, 134, 45340. [Google Scholar] [CrossRef]
- Guo, L.; Berglin, L.; Li, Y.; Mattila, H.; Mehrjerdi, A.K.; Skrifvars, M. ‘Disappearing Sensor’-Textile Based Sensor for Monitoring Breathing. In Proceedings of the 2011 International Conference on Control, Automation and Systems Engineering (CASE), Singapore, 30–31 July 2011; pp. 1–4. [Google Scholar]
- Kotova, M.; Zalud, L.; Kolarova, J.; Dobsak, P. Continuous monitoring of respiration during rehabilitation. In Proceedings of Replace, Repair, Restore, Relieve–Bridging Clinical and Engineering Solutions in Neurorehabilitation: Proceedings of the 2nd International Conference on NeuroRehabilitation (ICNR2014), Aalborg, Denmark, 24–26 June 2014; pp. 487–492. [Google Scholar]
- Ridolfi, A.; Vetter, R.; Solà, J.; Sartori, C. Physiological monitoring system for high altitude sports. Procedia Eng. 2010, 2, 2889–2894. [Google Scholar] [CrossRef]
- Pacelli, M.; Caldani, L.; Paradiso, R. Textile piezoresistive sensors for biomechanical variables monitoring. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 3 September 2006; pp. 5358–5361. [Google Scholar]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Amirjani, A.; Kamani, P.; Hosseini, H.R.M.; Sadrnezhaad, S. SPR-based assay kit for rapid determination of Pb2+. Anal. Chim. Acta 2022, 1220, 340030. [Google Scholar] [CrossRef]
- Mirjalili, S.; Tohidi Moghadam, T.H.; Sajedi, R. Facile and rapid detection of microalbuminuria by antibody-functionalized gold nanorods. Plasmonics 2022, 17, 1269–1277. [Google Scholar] [CrossRef]
- Boudewyns, A.; Willemen, M.; Wagemans, M.; De Cock, W.; Van de Heyning, P.; De Backer, W. Assessment of respiratory effort by means of strain gauges and esophageal pressure swings: A comparative study. Sleep 1997, 20, 168–170. [Google Scholar] [CrossRef]
- Motamedi-Fakhr, S.; Wilson, R.C.; Iles, R. Tidal breathing patterns derived from structured light plethysmography in COPD patients compared with healthy subjects. Med. Devices Evid. Res. 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ye, Y. A data-driven clinical decision support system for the diagnosis of sleep apneas. In Proceedings of the 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020; pp. 1018–1026. [Google Scholar]
- Merritt, C.R.; Nagle, H.T.; Grant, E. Textile-based capacitive sensors for respiration monitoring. IEEE Sens. J. 2008, 9, 71–78. [Google Scholar] [CrossRef]
- Min, S.D.; Yun, Y.; Shin, H. Simplified structural textile respiration sensor based on capacitive pressure sensing method. IEEE Sens. J. 2014, 14, 3245–3251. [Google Scholar]
- Zulfiqar, R.; Majeed, F.; Irfan, R.; Rauf, H.T.; Benkhelifa, E.; Belkacem, A.N. Abnormal respiratory sounds classification using deep CNN through artificial noise addition. Front. Med. 2021, 8, 714811. [Google Scholar] [CrossRef] [PubMed]
- Pham, L.; Phan, H.; Palaniappan, R.; Mertins, A.; McLoughlin, I. CNN-MoE based framework for classification of respiratory anomalies and lung disease detection. IEEE J. Biomed. Health Inform. 2021, 25, 2938–2947. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Bai, X.; Yu, Z.; Chen, Z.; Feng, N.; Ai, Y.; Song, S.; Xue, L. A Novel Three-Dimensional Reconstruction Technology for the Defect Inspection of Tubing and Casing. Processes 2023, 11, 2168. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Li, Y.; Feng, C.; Chen, P. Interval forecasting method of aggregate output for multiple wind farms using LSTM networks and time-varying regular vine copulas. Processes 2023, 11, 1530. [Google Scholar] [CrossRef]
- Khan, A.R. Dynamic Load Balancing in Cloud Computing: Optimized RL-Based Clustering with Multi-Objective Optimized Task Scheduling. Processes 2024, 12, 519. [Google Scholar] [CrossRef]
- Kumar, A.K.; Ritam, M.; Han, L.; Guo, S.; Chandra, R. Deep learning for predicting respiratory rate from biosignals. Comput. Biol. Med. 2022, 144, 105338. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lin, Y.D. Novel subspace method for frequencies estimation of two sinusoids with applications to vital signals. IET Signal Process. 2017, 11, 1114–1121. [Google Scholar] [CrossRef]
- Candan, C. A method for fine resolution frequency estimation from three DFT samples. IEEE Signal Process. Lett. 2011, 18, 351–354. [Google Scholar] [CrossRef]
- Marple, S.L., Jr. Digital Spectral Analysis; Courier Dover Publications: Mineola, NY, USA, 2019. [Google Scholar]
- Sejdic, E.; Djurovic, I.; Stankovic, L. Quantitative performance analysis of scalogram as instantaneous frequency estimator. IEEE Trans. Signal Process. 2008, 56, 3837–3845. [Google Scholar] [CrossRef]
- Stroeer, A.; Cannizzo, J.K.; Camp, J.B.; Gagarin, N. Methods for detection and characterization of signals in noisy data<? format?> with the Hilbert-Huang transform. Phys. Rev. D Part. Fields Gravit. Cosmol. 2009, 79, 124022. [Google Scholar]
- Rangayyan, R.M.; Krishnan, S. Biomedical Signal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Mikučionienė, D.; Čiukas, R.; Mickevičienė, A. The influence of knitting structure on mechanical properties of weft knitted fabrics. Mater. Sci. 2010, 16, 221–225. [Google Scholar]
- Lehrer, S. Understanding Lung Sounds; W.B. Saunders company: Philadelphia, PA, USA, 2018. [Google Scholar]
- De Troyer, A. Effect of hyperinflation on the diaphragm. Eur. Respir. J. 1997, 10, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Moisello, E.; Novaresi, L.; Sarkar, E.; Malcovati, P.; Costa, T.L.; Bonizzoni, E. PMUT and CMUT devices for biomedical applications: A review. IEEE Access 2024, 12, 18640–18657. [Google Scholar] [CrossRef]
- Bozali, B.; Ghodrat, S.; Plaude, L.; van Dam, J.J.; Jansen, K.M. Development of low hysteresis, linear weft-knitted strain sensors for smart textile applications. Sensors 2022, 22, 7688. [Google Scholar] [CrossRef]
- Pattnaik, T.; Kanungo, P.; Sahoo, P.K.; Kar, T.; Jain, P.; Soliman, M.S.; Islam, M.T. An efficient Low Complex-Functional Link Artificial Neural Network based framework for uneven light image thresholding. IEEE Access 2024, 12, 118315–118338. [Google Scholar] [CrossRef]
Stitched Respiratory Sensor | Strap | Buckle | |
---|---|---|---|
Dimension (height × width) | 75 × 50 (mm) | 700 × 50 (mm) | 80 × 55 (mm) |
Thickness | 0.56 (mm) | 0.43 (mm) | 11.8 (mm) |
Material | Polyester | polypropylene | Polyoxymethylene |
Direction | Mean | Standard Deviation |
---|---|---|
Wale | 0.82 | 0.03 |
Course | 0.65 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, J. Deep Learning Integration for Normal Breathing Classification Using a Flexible Fiber Sensor. Processes 2024, 12, 2644. https://doi.org/10.3390/pr12122644
Kim J, Kim J. Deep Learning Integration for Normal Breathing Classification Using a Flexible Fiber Sensor. Processes. 2024; 12(12):2644. https://doi.org/10.3390/pr12122644
Chicago/Turabian StyleKim, Jiseon, and Jooyong Kim. 2024. "Deep Learning Integration for Normal Breathing Classification Using a Flexible Fiber Sensor" Processes 12, no. 12: 2644. https://doi.org/10.3390/pr12122644
APA StyleKim, J., & Kim, J. (2024). Deep Learning Integration for Normal Breathing Classification Using a Flexible Fiber Sensor. Processes, 12(12), 2644. https://doi.org/10.3390/pr12122644