Comprehensive Analysis and Optimization of Peach (Prunus persica) Vacuum Drying: Employing Principal Component Analysis, Artificial Neural Networks and the Standard Score Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Chemicals
2.3. Drying Technique
2.4. Experimental Design
2.5. Analysis
2.5.1. Extract Preparation
Antioxidant Activity—FRAP Assay
Antioxidant Activity—DPPH Assay
2.5.2. Antioxidant Activity—ABTS Assay
2.5.3. Total Phenol Content (TPC)
2.5.4. Total Flavonoid Content (TFC)
2.5.5. Moisture Content (MC)
2.5.6. Water Activity (aw)
2.5.7. Total Color Change (ΔE)
2.6. Statistical Analysis
2.6.1. Principal Component Analysis (PCA)
2.6.2. Standard Scores (SSs)
2.6.3. Artificial Neural Network (ANN)
2.6.4. Global Sensitivity Analysis—Yoon’s Interpretation Method
3. Results and Discussion
3.1. Principal Component Analysis (PCA)
3.2. Standard Scores (SSs)
3.3. Artificial Neural Network (ANN)
3.3.1. Optimal Sample
3.3.2. Global Sensitivity Analysis—Yoon’s Interpretation Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, L. Genetic resources, breeding programs in China, and gene mining of peach: A review. Hortic. Plant J. 2020, 6, 205–215. [Google Scholar] [CrossRef]
- Bassi, D.; Mignani, I.; Spinardi, A.; Tura, D. Peach (Prunus persica (L.) Batsch). In Nutritional Composition of Fruit Cultivars; Preedy, V.R., Simmonds, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 535–572. [Google Scholar]
- Vlahović, B. Market of Agro-Industrial Products—Special Part; University of Novi Sad, Faculty of Agriculture: Novi Sad, Serbia, 2015. [Google Scholar]
- Wu, H.; Shi, J.; Xue, S.; Kakuda, Y.; Wang, D.; Jiang, Y.; Ye, X.; Li, Y.; Subramanian, J. Essential oil extracted from peach (Prunus persica) kernel and its physicochemical and antioxidant properties. LWT-Food Sci. Technol. 2011, 44, 2032–2039. [Google Scholar] [CrossRef]
- Roknul Azam, S.M.; Zhang, M.; Law, C.L.; Mujumdar, A.S. Effects of drying methods on quality attributes of peach (Prunus persica) leather. Dry. Technol. 2019, 37, 341–351. [Google Scholar] [CrossRef]
- Zhu, A.; Shen, X. The model and mass transfer characteristics of convection drying of peach slices. Int. J. Heat Mass Transf. 2014, 72, 345–351. [Google Scholar] [CrossRef]
- Bento, C.; Gonçalves, A.C.; Silva, B.; Silva, L.R. Assessing the phenolic profile, antioxidant, antidiabetic and protective effects against oxidative damage in human erythrocytes of peaches from Fundão. J. Funct. Foods 2018, 43, 224–233. [Google Scholar] [CrossRef]
- Andreotti, C.; Ravaglia, D.; Ragaini, A.; Costa, G. Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation. Ann. Appl. Biol. 2008, 153, 11–23. [Google Scholar] [CrossRef]
- Liao, X.; Greenspan, P.; Pegg, R.B. Characterizing the phenolic constituents and antioxidant capacity of Georgia peaches. Food Chem. 2019, 271, 345–353. [Google Scholar] [CrossRef]
- Manzoor, M.; Anwar, F.; Mahmood, Z.; Rashid, U.; Ashraf, M. Variation in minerals, phenolics and antioxidant activity of peel and pulp of different varieties of peach (Prunus persica L.) fruit from Pakistan. Molecules 2012, 17, 6491–6506. [Google Scholar] [CrossRef]
- Vargas-Murga, L.; de Rosso, V.V.; Mercadante, A.Z.; Olmedilla-Alonso, B. Fruits and vegetables in the Brazilian Household Budget Survey (2008–2009): Carotenoid content and assessment of individual carotenoid intake. J. Food Compos. Anal. 2016, 50, 88–96. [Google Scholar] [CrossRef]
- Serra, S.; Anthony, B.; Masia, A.; Giovannini, D.; Musacchi, S. Determination of biochemical composition in peach (Prunus persica L. Batsch) accessions characterized by different flesh color and textural typologies. Foods 2020, 9, 1452. [Google Scholar] [CrossRef]
- Cropotova, J.; Popel, S.; Colesnicenco, A.; Melnicenco, L. Physicochemical properties of bakery-stable fillings made from unpeeled peaches. AgroLife Sci. J. 2013, 2, 41–46. [Google Scholar]
- Doymaz, I. Suitability of thin-layer drying models for infrared drying of peach slices. J. Food Process. Pres. 2014, 38, 2232–2239. [Google Scholar] [CrossRef]
- Brar, A.S.; Kaur, P.; Kaur, G.; Subramanian, J.; Kumar, D.; Singh, A. Optimization of process parameters for foam-mat drying of peaches. Int. J. Fruit Sci. 2020, 20, S1495–S1518. [Google Scholar] [CrossRef]
- Akhoundzadeh Yamchi, A.; Yeganeh, R.; Kouchakzadeh, A. Effect of ultrasonic pretreatment on drying kinetics and physio-mechanical characteristics of peach slices. J. Food Process Eng. 2022, 45, e14053. [Google Scholar] [CrossRef]
- Vakula, A.; Tepić Horecki, A.; Pavlić, B.; Jokanović, M.; Ognjanov, V.; Milović, M.; Teslić, N.; Parpinello, G.; Decleer, M.; Šumić, Z. Application of different techniques on stone fruit (Prunus spp.) drying and assessment of physical, chemical and biological properties: Characterization of dried fruit properties. J. Food Process. Pres. 2021, 45, e15158. [Google Scholar] [CrossRef]
- Barta, J.; Balla, C.; Vatai, G. Dehydration preservation of fruits. In Handbook of Fruits and Fruit Processing; Sinha, N.K., Sidhu, J.S., Barta, J., Wu, J.S.B., Cano, M.P., Eds.; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 133–151. [Google Scholar]
- da Silva, E.S.; Brandão, S.C.R.; da Silva, A.L.; da Silva, J.H.F.; Coêlho, A.C.D.; Azoubel, P.M. Ultrasound-assisted vacuum drying of nectarine. J. Food Eng. 2019, 246, 119–124. [Google Scholar] [CrossRef]
- Pu, Y.Y.; Sun, D.W. Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging. Innov. Food Sci. Emerg. 2016, 33, 348–356. [Google Scholar] [CrossRef]
- Zhang, W.P.; Chen, C.; Pan, Z.; Xiao, H.W.; Xie, L.; Gao, Z.J.; Zheng, Z.A. Design and performance evaluation of a pilot-scale pulsed vacuum infrared drying (PVID) system for drying of berries. Dry. Technol. 2020, 38, 1340–1355. [Google Scholar] [CrossRef]
- Šumić, Z.; Tepić Horecki, A.; Ðilas, S.; Jokić, S. Laboratory Vacuum Dryer for Fruit; Technical Solution; University of Novi Sad, Faculty of Technology Novi Sad: Novi Sad, Serbia, 2014. [Google Scholar]
- Šumić, Z.; Tepić, A.; Vidović, S.; Jokić, S.; Malbaša, R. Optimization of frozen sour cherries vacuum drying process. Food Chem. 2013, 136, 55–63. [Google Scholar] [CrossRef]
- González-Gómez, D.; Lozano, M.; Fernández-León, M.F.; Bernalte, M.J.; Ayuso, M.C.; Rodríguez, A.B. Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). J. Food Compos. Anal. 2010, 23, 533–539. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Harborne, A.J. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis; Springer Science & Business Media: Dordrecht, The Netherlands, 1998; pp. 1–36. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brlek, T.; Pezo, L.; Voća, N.; Krička, T.; Vukmirović, Đ.; Čolović, R.; Bodroža-Solarov, M. Chemometric approach for assessing the quality of olive cake pellets. Fuel. Process. Technol. 2013, 116, 250–256. [Google Scholar] [CrossRef]
- Rocha, W.F.D.C.; Prado, C.B.D.; Blonder, N. Comparison of chemometric problems in food analysis using non-linear methods. Molecules 2020, 25, 3025. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Kianmehr, M.H.; Nazghelichi, T.; Rafiee, S. Optimization of an artificial neural network topology for predicting drying kinetics of carrot cubes using combined response surface and genetic algorithm. Dry. Technol. 2011, 29, 770–779. [Google Scholar] [CrossRef]
- Ghosh, D.; Datta, A. Deep learning enabled surrogate model of complex food processes for rapid prediction. Chem. Eng. Sci. 2023, 270, 118515. [Google Scholar] [CrossRef]
- Youssefi, S.; Emam-Djomeh, Z.; Mousavi, S.M. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Dry. Technol. 2009, 27, 910–917. [Google Scholar] [CrossRef]
- Granato, D.; de Araújo Calado, V.M.; Jarvis, B. Observations on the use of statistical methods in food science and technology. Food Res. Int. 2014, 55, 137–149. [Google Scholar] [CrossRef]
- Yoon, Y.; Swales, G., Jr.; Margavio, T.M. A Comparison of Discriminant Analysis versus Artificial Neural Networks. J. Oper. Res. Soc. 1993, 44, 51–60. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. J. Agric. Food Chem. 2009, 57, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food. Sci. Technol. 2000, 11, 340–346. [Google Scholar] [CrossRef]
- Branisa, J.; Jomova, K.; Porubska, M.; Kollar, V.; Simunkova, M.; Valko, M. Effect of drying methods on the content of natural pigments and antioxidant capacity in extracts from medicinal plants: A spectroscopic study. Chem. Pap. 2017, 71, 1993–2002. [Google Scholar] [CrossRef]
- García-Moreira, D.P.; Hernández-Guzmán, H.; Pacheco, N.; Cuevas-Bernardino, J.C.; Herrera-Pool, E.; Moreno, I.; López-Vidaña, E.C. Solar and convective drying: Modeling, color, texture, total phenolic content, and antioxidant activity of peach (Prunus persica (L.) Batsch) slices. Processes 2023, 11, 1280. [Google Scholar] [CrossRef]
- Mašović, S.M.; Janković, M.A.; Radulović, E.P. Investigation of quality changes in apples, preserved by drying, dehydrofreezing and freezedrying. Acta Period. Technol. 2000, 31, 213–219. [Google Scholar]
- Parikh, D.M. Vacuum drying: Basics and application. Chem. Eng. 2015, 122, 48–54. [Google Scholar]
- Šumić, Z.; Vakula, A.; Tepić, A.; Čakarević, J.; Vitas, J.; Pavlić, B. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food. Chem. 2016, 203, 465–475. [Google Scholar] [CrossRef]
- Šumić, Z.; Tepić, A.; Vidović, S.; Milić, A.; Vladić, J.; Pavlić, B. Process optimization of chanterelle (Cantharellus cibarius) mushrooms vacuum drying. J. Food. Process. Pres. 2017, 41, e12822. [Google Scholar] [CrossRef]
- Vakula, A.; Pavlić, B.; Pezo, L.; Tepić Horecki, A.; Daničić, T.; Raičević, L.; Ljubojević, M.; Šumić, Z. Vacuum drying of sweet cherry: Artificial neural networks approach in process optimization. J. Food. Process. Pres. 2020, 44, e14863. [Google Scholar] [CrossRef]
- Turkmen, F.; Karasu, S.; Karadag, A. Effects of different drying methods and temperature on the drying behavior and quality attributes of cherry laurel fruit. Processes 2020, 8, 761. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Effect of vacuum-drying, hot air-drying and freeze-drying on polyphenols and antioxidant capacity of lemon (Citrus limon) pomace aqueous extracts. Int. J. Food. Sci. Technol. 2017, 52, 880–887. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Khan, A.; Shah, S.T.; Basit, A.; Sajid, M.; Hanif, M.; Mohamed, H.I. Improvement of postharvest quality, secondary metabolites, antioxidant activity and quality attributes of Prunus persica L. subjected to solar drying and slice thickness. Saudi J. Biol. Sci. 2023, 30, 103866. [Google Scholar] [CrossRef] [PubMed]
- Francini, A.; Romeo, S.; Cifelli, M.; Gori, D.; Domenici, V.; Sebastiani, L. 1H NMR and PCA-based analysis revealed variety dependent changes in phenolic contents of apple fruit after drying. Food Chem. 2017, 221, 1206–1213. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Bajić, A.; Pezo, L.L.; Stupar, A.; Filipčev, B.; Cvetković, B.R.; Tepić Horecki, A.; Mastilović, J. Application of lyophilized plum pomace as a functional ingredient in a plum spread: Optimizing texture, colour and phenol antioxidants by ANN modelling. LWT-Food Sci. Technol. 2020, 130, 109588. [Google Scholar] [CrossRef]
- Alviso, D.; Zárate, C.; Artana, G.; Duriez, T. Regressions of the dielectric constant and speed of sound of vegetable oils from their composition and temperature using genetic programming. J. Food Compos. Anal. 2021, 104, 104175. [Google Scholar] [CrossRef]
- Madamba, P.S. The response surface methodology: An application to optimize dehydration operations of selected agricultural crops. LWT-Food Sci. Technol. 2002, 35, 584–592. [Google Scholar] [CrossRef]
- van Griensven, A.V.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
Sample | T (°C) | Code | p (mbar) | Code | t (h) | Code |
---|---|---|---|---|---|---|
1 | 60 | 0 | 120 | 1 | 6 | −1 |
2 | 50 | −1 | 70 | 0 | 10 | 1 |
3 | 70 | 1 | 70 | 0 | 10 | 1 |
4 | 60 | 0 | 120 | 1 | 10 | 1 |
5 | 60 | 0 | 70 | 0 | 8 | 0 |
6 | 60 | 0 | 20 | −1 | 6 | −1 |
7 | 50 | −1 | 120 | 1 | 8 | 0 |
8 | 60 | 0 | 70 | 0 | 8 | 0 |
9 | 50 | −1 | 20 | −1 | 8 | 0 |
10 | 50 | −1 | 70 | 0 | 6 | −1 |
11 | 60 | 0 | 70 | 0 | 8 | 0 |
12 | 70 | 1 | 20 | −1 | 8 | 0 |
13 | 70 | 1 | 120 | 1 | 8 | 0 |
14 | 70 | 1 | 70 | 0 | 6 | −1 |
15 | 60 | 0 | 20 | −1 | 10 | 1 |
16 | 60 | 0 | 70 | 0 | 8 | 0 |
17 | 60 | 0 | 70 | 0 | 8 | 0 |
18 | 70 | 1 | 70 | 0 | 8 | 0 |
19 | 50 | −1 | 70 | 0 | 8 | 0 |
20 | 60 | 0 | 20 | −1 | 8 | 0 |
21 | 60 | 0 | 120 | 1 | 8 | 0 |
22 | 60 | 0 | 70 | 0 | 6 | −1 |
23 | 60 | 0 | 70 | 0 | 10 | 1 |
Sample | MC | aw | ΔE | TPC | TFC | FRAP | DPPH | ABTS |
---|---|---|---|---|---|---|---|---|
1 | 11.89 | 0.408 | 36.12 | 393.46 | 41.42 | 3.64 | 2.36 | 6.97 |
2 | 11.38 | 0.420 | 35.93 | 573.85 | 57.35 | 3.89 | 3.92 | 8.91 |
3 | 8.04 | 0.353 | 42.64 | 736.19 | 93.26 | 4.90 | 5.94 | 9.17 |
4 | 10.34 | 0.424 | 35.71 | 520.75 | 65.18 | 4.04 | 4.06 | 8.24 |
5 | 7.00 | 0.267 | 38.02 | 494.00 | 48.39 | 3.52 | 1.08 | 8.06 |
6 | 8.86 | 0.284 | 42.52 | 599.57 | 73.95 | 4.98 | 5.46 | 12.67 |
7 | 15.58 | 0.492 | 35.85 | 371.09 | 44.82 | 2.72 | 1.33 | 4.22 |
8 | 10.12 | 0.348 | 35.58 | 529.89 | 64.02 | 3.68 | 4.10 | 7.90 |
9 | 13.87 | 0.433 | 44.98 | 688.23 | 79.29 | 4.54 | 6.48 | 14.36 |
10 | 24.95 | 0.702 | 34.73 | 489.95 | 49.82 | 3.35 | 2.72 | 6.18 |
11 | 11.61 | 0.373 | 41.01 | 430.30 | 48.89 | 3.22 | 1.98 | 5.18 |
12 | 9.67 | 0.326 | 36.51 | 597.70 | 88.99 | 3.54 | 4.82 | 12.66 |
13 | 9.74 | 0.335 | 38.84 | 448.86 | 59.29 | 3.50 | 1.48 | 7.93 |
14 | 16.63 | 0.500 | 39.09 | 682.95 | 86.75 | 4.96 | 5.34 | 13.62 |
15 | 15.97 | 0.471 | 40.98 | 563.43 | 62.62 | 4.41 | 6.24 | 7.30 |
16 | 10.89 | 0.370 | 42.10 | 709.32 | 93.73 | 5.32 | 4.36 | 14.93 |
17 | 15.00 | 0.475 | 42.59 | 559.21 | 53.47 | 4.58 | 4.84 | 9.49 |
18 | 11.43 | 0.348 | 45.82 | 731.61 | 102.39 | 4.97 | 5.56 | 14.54 |
19 | 22.10 | 0.598 | 34.32 | 348.29 | 37.65 | 2.37 | 1.22 | 2.53 |
20 | 12.16 | 0.361 | 40.75 | 741.95 | 94.57 | 5.85 | 7.18 | 14.83 |
21 | 12.29 | 0.455 | 34.67 | 601.68 | 69.18 | 4.62 | 5.83 | 9.32 |
22 | 15.74 | 0.467 | 40.99 | 791.25 | 90.09 | 7.01 | 8.26 | 15.29 |
23 | 11.43 | 0.350 | 35.50 | 503.39 | 52.84 | 3.95 | 2.26 | 7.92 |
F test | 185.78 | 86.98 | 14.03 | 102.53 | 142.87 | 78.70 | 503.96 | 264.61 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Polarity | − | − | − | + | + | + | + | + |
Weight | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Net. Name | Training Perf. | Test Perf. | Train. Error | Test Error | Train. Algorithm | Error Funct. | Hidden Activation | Output Activation | |
---|---|---|---|---|---|---|---|---|---|
MC | MLP 3-8-1 | 0.917 | 0.954 | 0.720 | 1.566 | BFGS 125 | SOS | Tanh | Identity |
aw | MLP 3-10-1 | 0.899 | 0.940 | 0.000 | 0.004 | BFGS 80 | SOS | Tanh | Identity |
TCC | MLP 3-10-1 | 0.870 | 0.969 | 0.772 | 2.002 | BFGS 204 | SOS | Exponential | Identity |
TP | MLP 3-10-1 | 0.879 | 0.837 | 938.869 | 2988.411 | BFGS 119 | SOS | Tanh | Identity |
TF | MLP 3-7-1 | 0.832 | 0.596 | 31.308 | 112.616 | BFGS 102 | SOS | Logistic | Identity |
FRAP | MLP 3-9-1 | 0.875 | 0.807 | 0.065 | 0.111 | BFGS 180 | SOS | Tanh | Identity |
DPPH | MLP 3-9-1 | 0.885 | 0.990 | 0.236 | 0.672 | BFGS 74 | SOS | Tanh | Identity |
ABTS | MLP 3-8-1 | 0.830 | 0.576 | 1.132 | 0.759 | BFGS 168 | SOS | Exponential | Identity |
ANN | χ2 | RMSE | MBE | MPE | SSE | AARD | r2 |
---|---|---|---|---|---|---|---|
MC | 1.506 | 1.200 | 0.000 | 4.235 | 33.130 | 4.235 | 0.917 |
aw | 0.001 | 0.031 | 0.000 | 2.961 | 0.022 | 2.961 | 0.899 |
TCC | 1.614 | 1.242 | 0.000 | 1.365 | 35.497 | 1.365 | 0.870 |
TP | 2.0 × 103 | 43.333 | 0.000 | 2.844 | 4.3 × 104 | 2.844 | 0.879 |
TF | 65.463 | 7.913 | 0.000 | 4.648 | 1.4 × 103 | 4.648 | 0.832 |
FRAP | 0.136 | 0.361 | 0.000 | 3.773 | 2.991 | 3.773 | 0.875 |
DPPH | 0.493 | 0.687 | 0.000 | 15.091 | 10.846 | 15.091 | 0.885 |
ABTS | 2.366 | 1.504 | 0.000 | 6.400 | 52.054 | 6.400 | 0.830 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šumić, Z.; Tepić Horecki, A.; Pezo, L.; Pavlić, B.; Nastić, N.; Milić, A. Comprehensive Analysis and Optimization of Peach (Prunus persica) Vacuum Drying: Employing Principal Component Analysis, Artificial Neural Networks and the Standard Score Approach. Processes 2024, 12, 2643. https://doi.org/10.3390/pr12122643
Šumić Z, Tepić Horecki A, Pezo L, Pavlić B, Nastić N, Milić A. Comprehensive Analysis and Optimization of Peach (Prunus persica) Vacuum Drying: Employing Principal Component Analysis, Artificial Neural Networks and the Standard Score Approach. Processes. 2024; 12(12):2643. https://doi.org/10.3390/pr12122643
Chicago/Turabian StyleŠumić, Zdravko, Aleksandra Tepić Horecki, Lato Pezo, Branimir Pavlić, Nataša Nastić, and Anita Milić. 2024. "Comprehensive Analysis and Optimization of Peach (Prunus persica) Vacuum Drying: Employing Principal Component Analysis, Artificial Neural Networks and the Standard Score Approach" Processes 12, no. 12: 2643. https://doi.org/10.3390/pr12122643
APA StyleŠumić, Z., Tepić Horecki, A., Pezo, L., Pavlić, B., Nastić, N., & Milić, A. (2024). Comprehensive Analysis and Optimization of Peach (Prunus persica) Vacuum Drying: Employing Principal Component Analysis, Artificial Neural Networks and the Standard Score Approach. Processes, 12(12), 2643. https://doi.org/10.3390/pr12122643