Biochar as an Enzyme Immobilization Support and Its Application for Dye Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Laccase Characterization
2.2.2. Biochar Supports for Laccase Immobilization
2.2.3. Enzyme Assay
2.2.4. Kinetics of Enzyme Immobilization
2.2.5. Characterization of Laccase Immobilized Biochar
2.2.6. Brilliant Green Decolorization
3. Results and Discussion
3.1. Laccase Characterization
3.2. Biochars Supports for Laccase Immobilization
3.3. Kinetics of Enzyme Immobilization
3.4. Characterization of Laccase Immobilized Biochar
3.5. Brilliant Green Decolorization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chapman, J.; Ismail, A.E.; Dinu, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 2018, 8, 238. [Google Scholar] [CrossRef]
- Mota, L.S.O.; de Oliveira, P.C.O.; Peixoto, B.S.; de Moraes, M.C. Enzyme-coated biochar as a sustainable solution for water and wastewater treatment. Environ. Sci. Water Res. Technol. 2023, 9, 2772–2786. [Google Scholar] [CrossRef]
- Majeau, J.A.; Brar, S.K.; Tyagi, R.D. Laccases for removal of recalcitrant and emerging pollutants. Bioresour. Technol. 2010, 101, 2331–2350. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Daverey, A.; Arunachalam, K. Biochar: Production, properties and emerging role as a support for enzyme immobilization. J. Clean. Prod. 2020, 255, 120267. [Google Scholar] [CrossRef]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef]
- Bijoy, G.; Rajeev, R.; Benny, L.; Jose, S.; Varghese, A. Enzyme immobilization on biomass-derived carbon materials as a sustainable approach towards environmental applications. Chemosphere 2022, 307, 135759. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Dutta, K.; Arunachalam, K. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar. Chemosphere 2022, 297, 134126. [Google Scholar] [CrossRef]
- Lopičić, Z.R.; Šoštarić, T.D.; Milojković, J.V.; Antanasković, A.V.; Milić, J.S.; Spasić, S.D.; Avdalović, J.S. Efficient Removal of Water Soluble Fraction of Diesel Oil by Biochar Sorption Supported by Microbiological Degradation. Processes 2024, 12, 964. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef]
- Lopičić, Z.; Avdalović, J.; Milojković, J.; Antanasković, A.; Lješević, M.; Lugonja, N.; Šoštarić, T. Removal of diesel pollution by biochar—Support in water remediation. Hem. Ind. 2021, 75, 329–339. [Google Scholar] [CrossRef]
- El-Naggar, A.; El-Naggar, A.H.; Shaheen, S.M.; Sarkar, B.; Chang, S.X.; Tsang, D.C.W.; Rinklebe, J.; Ok, Y.S. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. J. Environ. Manag. 2019, 241, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Antanasković, A.; Lopičić, Z.; Pehlivan, E.; Adamović, V.; Šoštarić, T.; Milojković, J.; Milivojević, M. Thermochemical conversion of non-edible fruit waste for dye removal from wastewater. Biomass Convers. Biorefinery 2023, 14, 18649–18665. [Google Scholar] [CrossRef]
- Waqas, M.; Aburiazaiza, A.S.; Miandad, R.; Rehan, M.; Barakat, M.A.; Nizami, A.S. Development of biochar as fuel and catalyst in energy recovery technologies. J. Clean. Prod. 2018, 188, 477–488. [Google Scholar] [CrossRef]
- Zhang, Y.; Piao, M.; He, L.; Yao, L.; Piao, T.; Liu, Z.; Piao, Y. Immobilization of laccase on magnetically separable biochar for highly efficient removal of bisphenol A in water. RSC Adv. 2020, 10, 4795–4804. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Pourcel, F.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Covalent immobilization of laccase on citric acid functionalized micro-biochars derived from different feedstock and removal of diclofenac. Chem. Eng. J. 2018, 351, 985–994. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, W.; Cai, Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021, 403, 126272. [Google Scholar] [CrossRef]
- Saif Ur Rehman, M.; Kim, I.; Rashid, N.; Adeel Umer, M.; Sajid, M.; Han, J.I. Adsorption of Brilliant Green Dye on Biochar Prepared From Lignocellulosic Bioethanol Plant Waste. Clean Soil Air Water 2016, 44, 55–62. [Google Scholar] [CrossRef]
- Mariah, G.K.; Pak, K.S. Removal of brilliant green dye from aqueous solution by electrocoagulation using response surface methodology. Mater. Today Proc. 2020, 20, 488–492. [Google Scholar] [CrossRef]
- Loqman, A.; El Bali, B.; Lützenkirchen, J.; Weidler, P.G.; Kherbeche, A. Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology. Appl. Water Sci. 2017, 7, 3649–3660. [Google Scholar] [CrossRef]
- Al-sareji, O.J.; Meiczinger, M.; Al-Juboori, R.A.; Grmasha, R.A.; Andredaki, M.; Somogyi, V.; Idowu, I.A.; Stenger-Kovács, C.; Jakab, M.; Lengyel, E.; et al. Efficient removal of pharmaceutical contaminants from water and wastewater using immobilized laccase on activated carbon derived from pomegranate peels. Sci. Rep. 2023, 13, 11933. [Google Scholar] [CrossRef]
- Ahmad Jafri, N.A.; Rahman, R.A.; Mohd Yusof, A.H.; Sulaiman, N.J.; Sukmawati, D.; Mohd Syukri, M.S. Adsorption kinetics of immobilized laccase on magnetically-separable hierarchically-ordered mesocellular mesoporous silica. Bioresour. Technol. Rep. 2023, 22, 101445. [Google Scholar] [CrossRef]
- Ilić, N.; Davidović, S.; Milić, M.; Lađarević, J.; Onjia, A.; Dimitrijević-Branković, S.; Mihajlovski, K. Green biocatalyst for decolorization of azo dyes from industrial wastewater: Coriolopsis trogii 2SMKN laccase immobilized on recycled brewer’s spent grain. Environ. Sci. Pollut. Res. 2024, 31, 32072–32090. [Google Scholar] [CrossRef] [PubMed]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Bradford assay for determining protein concentration. Cold Spring Harb. Protoc. 2020, 2020, 136–138. [Google Scholar] [CrossRef] [PubMed]
- ASTM D6851-02; Standard Guide for Determination of the Water Content of Soil by the Oven Drying Method. ASTM International: West Conshohocken, PA, USA, 2002.
- Taheran, M.; Naghdi, M.; Brar, S.K.; Knystautas, E.J.; Verma, M.; Surampalli, R.Y. Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane. Sci. Total Environ. 2017, 605–606, 315–321. [Google Scholar] [CrossRef]
- Fatarella, E.; Spinelli, D.; Ruzzante, M.; Pogni, R. Nylon 6 film and nanofiber carriers: Preparation and laccase immobilization performance. J. Mol. Catal. B Enzym. 2014, 102, 41–47. [Google Scholar] [CrossRef]
- Al-sareji, O.J.; Meiczinger, M.; Somogyi, V.; Al-Juboori, R.A.; Grmasha, R.A.; Stenger-Kovács, C.; Jakab, M.; Hashim, K.S. Removal of emerging pollutants from water using enzyme-immobilized activated carbon from coconut shell. J. Environ. Chem. Eng. 2023, 11, 109803. [Google Scholar] [CrossRef]
- Doǧaç, Y.I.; Çinar, M.; Teke, M. Improving of catalase stability properties by encapsulation in alginate/Fe3O4 magnetic composite beads for enzymatic removal of H2O2. Prep. Biochem. Biotechnol. 2015, 45, 144–157. [Google Scholar] [CrossRef]
- Johan, U.U.M.; Rahman, R.N.Z.R.A.; Kamarudin, N.H.A.; Latip, W.; Ali, M.S.M. Immobilization of Hyperthermostable Carboxylesterase EstD9 from Anoxybacillus geothermalis D9 onto Polymer Material and Its Physicochemical Properties. Polymers 2023, 15, 1361. [Google Scholar] [CrossRef]
- Antanasković, A.; Lopičić, Z.; Šoštarić, T.; Adamović, V.; Cvetković, S.; Perendija, J.; Milivojević, M. Toxic dye removal by thermally modified lignocellulosic wastewaste in a three-phase air-lift reactor: Kinetic insights. Hem. Ind. 2024, 78, 241–252. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Adsorptive immobilization of agro-industrially produced crude laccase on various micro-biochars and degradation of diclofenac. Sci. Total Environ. 2018, 640–641, 1251–1258. [Google Scholar] [CrossRef]
- He, L.; Yang, Y.; Kim, J.; Yao, L.; Dong, X.; Li, T.; Piao, Y. Multi-layered enzyme coating on highly conductive magnetic biochar nanoparticles for bisphenol A sensing in water. Chem. Eng. J. 2020, 384, 123276. [Google Scholar] [CrossRef]
- Cristóvão, R.O.; Tavares, A.P.M.; Brígida, A.I.; Loureiro, J.M.; Boaventura, R.A.R.; Macedo, E.A.; Coelho, M.A.Z. Immobilization of commercial laccase onto green coconut fiber by adsorption and its application for reactive textile dyes degradation. J. Mol. Catal. B Enzym. 2011, 72, 6–12. [Google Scholar] [CrossRef]
- Aydemir, T.; Güler, S. Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal. Artif. Cells Nanomed. Biotechnol. 2015, 43, 425–432. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Sci. Total Environ. 2017, 584–585, 393–401. [Google Scholar] [CrossRef]
- Men, X.H.; Zhang, Z.Z.; Song, H.J.; Wang, K.; Jiang, W. Functionalization of carbon nanotubes to improve the tribological properties of poly(furfuryl alcohol) composite coatings. Compos. Sci. Technol. 2008, 68, 1042–1049. [Google Scholar] [CrossRef]
- Samui, A.; Sahu, S.K. One-pot synthesis of microporous nanoscale metal organic frameworks conjugated with laccase as a promising biocatalyst. New J. Chem. 2018, 42, 4192–4200. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Chand, D. Comparative Study of Dye Decolorization using free and Alginate Gel Entrapped Laccase from Cercospora sp. SPF-6. Adv. Biotechnol. Microbiol. 2018, 11, 555813. [Google Scholar] [CrossRef]
- Alsaiari, N.S.; Amari, A.; Katubi, K.M.; Alzahrani, F.M.; Harharah, H.N.; Rebah, F.B.; Tahoon, M.A. The biocatalytic degradation of organic dyes using laccase immobilized magnetic nanoparticles. Appl. Sci. 2021, 11, 8216. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Mat, H. The Catalytic Activity of Laccase Immobilized in Sol-Gel Silica. J. Appl. Sci. 2009, 9, 3141–3145. [Google Scholar] [CrossRef]
- Ilk, S.; Demircan, D.; Saglam, S.; Saglam, N.; Rzayev, Z.M.O. Immobilization of laccase onto a porous nanocomposite: Application for textile dye degradation. Turk. J. Chem. 2016, 40, 262–276. [Google Scholar] [CrossRef]
- Jankowska, K.; Ciesielczyk, F.; Bachosz, K.; Zdarta, J.; Kaczorek, E.; Jesionowski, T. Laccase immobilized onto zirconia-silica hybrid doped with Cu2+ as an effective biocatalytic system for decolorization of dyes. Materials 2019, 12, 1252. [Google Scholar] [CrossRef] [PubMed]
- Amari, A.; Alzahrani, F.M.; Alsaiari, N.S.; Katubi, K.M.; Rebah, F.B.; Tahoon, M.A. Magnetic metal organic framework immobilized laccase for wastewater decolorization. Processes 2021, 9, 774. [Google Scholar] [CrossRef]
- Arica, M.Y.; Salih, B.; Celikbicak, O.; Bayramoglu, G. Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI–ToF-MS. Chem. Eng. Res. Des. 2017, 128, 107–119. [Google Scholar] [CrossRef]
- Chen, J.; Leng, J.; Yang, X.; Liao, L.; Liu, L.; Xiao, A. Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes. Molecules 2017, 22, 221. [Google Scholar] [CrossRef]
- Karagoz, B.; Bayramoglu, G.; Altintas, B.; Bicak, N.; Yakup Arica, M. Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide: Immobilized laccase for benzidine based dyes degradation. Bioresour. Technol. 2011, 102, 6783–6790. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so called adsorption of soluble substances. K. Sven. Veternskapsakad. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
Kinetic Model | Parameter | Value |
---|---|---|
qe, exp (mg/mg) | 0.0214 | |
Pseudo-first order | qt, calc (mg/mg) | 0.0178 |
k1 (1/min) | 0.0188 | |
R2 | 0.9853 | |
χ2 | 8.55 × 10−7 | |
Pseudo-second order | qt, calc (mg/mg) | 0.0226 |
k2 (g/mg min) | 0.7949 | |
R2 | 0.9906 | |
χ2 | 5.71 × 10−7 |
Solid Carrier | Dye | Decolorization Efficiency, % | Parameters | References |
---|---|---|---|---|
Nanoparticles of magnetic iron oxide | Direct Red 23 | 89 | Ci = 10 mg/mL, pH = 5.0, T = 50 °C, t = 1 h. | [40] |
Poly(MA-alt-MVE)-g-PLA nanocomposite | Reactive Red 3 | 65 | Ci = 0.05 mg/L, pH = 5.0, T = 20 °C, t = 1.5 h. | [42] |
Magnetic metal–organic framework | Reactive Black 5 | 81 | Ci = 5 mg/L, pH = 4, T = 25 °C, t = 24 h. | [44] |
Magnetic graphene oxide | Brilliant green | 91 | Ci = 50 mg/L, pH = 3.0, T = 35 °C, t = 3 h. | [46] |
Poly(vinylamine) microbeads | Direct Blue 1/Direct Red 128 | 68/87 | Ci = 50 mg/L, pH = 5.5, T = 30 °C, t = 18 h. | [47] |
Sour cherry stone biochar | Brilliant green | 93 | Ci = 50 mg/L, pH = 5.0, T = 30 °C, t = 4 h. | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antanasković, A.; Lopičić, Z.; Dimitrijević-Branković, S.; Ilić, N.; Adamović, V.; Šoštarić, T.; Milivojević, M. Biochar as an Enzyme Immobilization Support and Its Application for Dye Degradation. Processes 2024, 12, 2418. https://doi.org/10.3390/pr12112418
Antanasković A, Lopičić Z, Dimitrijević-Branković S, Ilić N, Adamović V, Šoštarić T, Milivojević M. Biochar as an Enzyme Immobilization Support and Its Application for Dye Degradation. Processes. 2024; 12(11):2418. https://doi.org/10.3390/pr12112418
Chicago/Turabian StyleAntanasković, Anja, Zorica Lopičić, Suzana Dimitrijević-Branković, Nevena Ilić, Vladimir Adamović, Tatjana Šoštarić, and Milan Milivojević. 2024. "Biochar as an Enzyme Immobilization Support and Its Application for Dye Degradation" Processes 12, no. 11: 2418. https://doi.org/10.3390/pr12112418
APA StyleAntanasković, A., Lopičić, Z., Dimitrijević-Branković, S., Ilić, N., Adamović, V., Šoštarić, T., & Milivojević, M. (2024). Biochar as an Enzyme Immobilization Support and Its Application for Dye Degradation. Processes, 12(11), 2418. https://doi.org/10.3390/pr12112418