Evaluating Benchtop Additive Manufacturing Processes Considering Latest Enhancements in Operational Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Types of Desktop AM (Additive Manufacturing) Processes
2.2. Common Thermoplastic and Photopolymer Resin Materials for Desktop 3D Printers
- Polylactic Acid (PLA).
- Acrylonitrile Butadiene Styrene (ABS).
- Polyethylene Terephthalate Glycol (PETG).
- Thermoplastic Polyurethane (TPU).
- Photopolymer resins.
3. Desktop 3D Printer Technical Characteristics
Desktop 3D Printers
- Bambu Lab X1-Carbon.
- Creality K1-Max.
- Creality HALOT MAGE S 14K.
- Anycubic Photon Mono M7 Pro.
- FormLabs Form 3L.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Su, A.; Al’Aref, S.J. History of 3D Printing. In 3D Printing Applications in Cardiovascular Medicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–10. ISBN 9780128039175. [Google Scholar]
- Horvath, J.; Cameron, R. Mastering 3D Printing: A Guide to Modeling, Printing, and Prototyping; Apress: Berkeley, CA, USA, 2020; ISBN 9781484258415. [Google Scholar]
- Zastrow, M. 3D Printing Gets Bigger, Faster and Stronger. Nature 2020, 578, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Mpofu, T.P.; Mawere, C.; Mukosera, M. The Impact and Application of 3D Printing Technology. Available online: https://d1wqtxts1xzle7.cloudfront.net/34056587/MDIwMTQ2NzU_-libre.pdf?1403912831=&response-content-disposition=inline%3B+filename%3DThe_Impact_and_Application_of_3D_Printin.pdf&Expires=1729758073&Signature=RAdVq9xK5aryLgDusAlMeC3oDrapd4qMSVv3ZmACgs5veBPdPAF7mSQzCElpSKmfGdtAxiCZlEHVvNBqW3-2w7efl0LwbedJuF2Dtvq1JcOnQPGK0XU6NB7ai~ksytLEZH6r-EgF1jZLydEFQxYDJM2HTUQHytfrvmc4Gg3ixbAuASFia6rBsvCTOaI-KYTzQCZEQnRn2RREio6ZHQ9ICn5eD2C6gYLcHh4zuGOyQEsHowoK0EKZ5SfZJHnN6DN1RuNJQCiFQqoN-nes2HOMkxX9vmQ6QPgXVxjoMPqlmeSys3h~DPgdc4L-v2IilPlF2wBlzJcTxsd8YtmiEA3BcQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 4 July 2024).
- Lee, J.-Y.; An, J.; Chua, C.K. Fundamentals and Applications of 3D Printing for Novel Materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Lipson, H.; Kurman, M. Fabricated: The New World of 3D Printing; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 9781118416945. [Google Scholar]
- Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Ul Haq, M.I. 3D Printing—A Review of Processes, Materials and Applications in Industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42. [Google Scholar] [CrossRef]
- Kantaros, A.; Soulis, E.; Ganetsos, T.; Petrescu, F.I.T. Applying a Combination of Cutting-Edge Industry 4.0 Processes towards Fabricating a Customized Component. Processes 2023, 11, 1385. [Google Scholar] [CrossRef]
- Ganetsos, T.; Kantaros, A.; Gioldasis, N.; Brachos, K. Applications of 3D Printing and Illustration in Industry. In Proceedings of the 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 9–10 June 2023. [Google Scholar]
- Thakar, C.M.; Parkhe, S.S.; Jain, A.; Phasinam, K.; Murugesan, G.; Ventayen, R.J.M. 3d Printing: Basic Principles and Applications. Mater. Today 2022, 51, 842–849. [Google Scholar] [CrossRef]
- Kantaros, A.; Petrescu, F.; Abdoli, H.; Diegel, O.; Chan, S.; Iliescu, M.; Ganetsos, T.; Munteanu, I.; Ungureanu, L. Additive Manufacturing for Surgical Planning and Education: A Review. Appl. Sci. 2024, 14, 2550. [Google Scholar] [CrossRef]
- Zukas, V.; Zukas, J.A. An Introduction to 3D Printing; First Edition Design Publishing: Sarasota, FL, USA, 2015; ISBN 9781622878970. [Google Scholar]
- Jordan, J.M. 3D Printing; MIT Press: London, UK, 2019; ISBN 9780262536684. [Google Scholar]
- Kantaros, A.; Diegel, O.; Piromalis, D.; Tsaramirsis, G.; Khadidos, A.O.; Khadidos, A.O.; Khan, F.Q.; Jan, S. 3D Printing: Making an Innovative Technology Widely Accessible through Makerspaces and Outsourced Services. Mater. Today 2022, 49, 2712–2723. [Google Scholar] [CrossRef]
- Loy, J.; Novak, J.; Diegel, O. Making the Future/Remaking Product Design. In 3D Printing for Product Designers; Routledge: London, UK, 2023; pp. 266–274. ISBN 9781003122203. [Google Scholar]
- Loy, J.; Novak, J.; Diegel, O. Demystifying 3D Printing Processes and Workflow. In 3D Printing for Product Designers; Routledge: London, UK, 2023; pp. 12–51. ISBN 9781003122203. [Google Scholar]
- Wohlers Report 2023. Available online: https://wohlersassociates.com/product/wr2023/ (accessed on 4 July 2024).
- Rayna, T.; Striukova, L. From Rapid Prototyping to Home Fabrication: How 3D Printing Is Changing Business Model Innovation. Technol. Forecast. Soc. Change 2016, 102, 214–224. [Google Scholar] [CrossRef]
- Kamran, M.; Saxena, A. A Comprehensive Study on 3D Printing Technology. MIT Int. J. Mech. Eng. 2016, 6, 63–69. [Google Scholar]
- Bogue, R. 3D Printing: The Dawn of a New Era in Manufacturing? Assem. Autom. 2013, 33, 307–311. [Google Scholar] [CrossRef]
- Kantaros, A. 3D Printing in Regenerative Medicine: Technologies and Resources Utilized. Int. J. Mol. Sci. 2022, 23, 14621. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, Z.; Liu, Y.; Deng, J. Function Representation Based Slicer for 3D Printing. Comput. Aided Geom. Des. 2018, 62, 276–293. [Google Scholar] [CrossRef]
- Antreas, K.; Piromalis, D. Employing a Low-Cost Desktop 3D Printer: Challenges, and How to Overcome Them by Tuning Key Process Parameters. Int. J. Mech. Appl. 2021, 10, 11–19. [Google Scholar] [CrossRef]
- Narita, M.; Takaki, T.; Shibahara, T.; Iwamoto, M.; Yakushiji, T.; Kamio, T. Utilization of Desktop 3D Printer-Fabricated “Cost-Effective” 3D Models in Orthognathic Surgery. Maxillofac. Plast. Reconstr. Surg. 2020, 42, 24. [Google Scholar] [CrossRef]
- Pearson, H.A.; Dubé, A.K. 3D Printing as an Educational Technology: Theoretical Perspectives, Learning Outcomes, and Recommendations for Practice. Educ. Inf. Technol. 2022, 27, 3037–3064. [Google Scholar] [CrossRef]
- Ford, S.; Minshall, T. Invited Review Article: Where and How 3D Printing Is Used in Teaching and Education. Addit. Manuf. 2019, 25, 131–150. [Google Scholar] [CrossRef]
- Fernandez-Vicente, M.; Calle, W.; Ferrandiz, S.; Conejero, A. Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing. 3D Print. Addit. Manuf. 2016, 3, 183–192. [Google Scholar] [CrossRef]
- Žarko, J.; Vladić, G.; Pál, M.; Dedijer, S. Influence of Printing Speed on Production of Embossing Tools Using fdM 3d Printing Technology. J. Graph. Eng. Des. 2017, 8, 19–27. [Google Scholar] [CrossRef]
- Kechagias, J.; Zaoutsos, S. Effects of 3D-Printing Processing Parameters on FFF Parts’ Porosity: Outlook and Trends. Mater. Manuf. Process. 2024, 39, 804–814. [Google Scholar] [CrossRef]
- Geng, P.; Zhao, J.; Wu, W.; Ye, W.; Wang, Y.; Wang, S.; Zhang, S. Effects of Extrusion Speed and Printing Speed on the 3D Printing Stability of Extruded PEEK Filament. J. Manuf. Process. 2019, 37, 266–273. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. Effects of Raster Layup and Printing Speed on Strength of 3D-Printed Structural Components. Procedia Struct. Integr. 2020, 28, 720–725. [Google Scholar] [CrossRef]
- Manapat, J.Z.; Chen, Q.; Ye, P.; Advincula, R.C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng. 2017, 302, 1600553. [Google Scholar] [CrossRef]
- Deng, W.; Xie, D.; Liu, F.; Zhao, J.; Shen, L.; Tian, Z. DLP-Based 3D Printing for Automated Precision Manufacturing. Mob. Inf. Syst. 2022, 2022, 2272699. [Google Scholar] [CrossRef]
- Valentinčič, J.; Peroša, M.; Jerman, M.; Sabotin, I.; Lebar, A. Low Cost Printer for DLP Stereolithography. Stroj. Vestn. 2017, 63, 559–566. [Google Scholar] [CrossRef]
- Rivera-López, F.; Pavón, M.M.L.; Correa, E.C.; Molina, M.H. Effects of Nozzle Temperature on Mechanical Properties of Polylactic Acid Specimens Fabricated by Fused Deposition Modeling. Polymers 2024, 16, 1867. [Google Scholar] [CrossRef]
- Kim, M.; Lee, J.; Park, C.; Jo, D.; Yu, B.; Khalifah, S.A.; Hayashi, M.; Kim, R.H. Evaluation of Shear Bond Strengths of 3D Printed Materials for Permanent Restorations with Different Surface Treatments. Polymers 2024, 16, 1838. [Google Scholar] [CrossRef]
- Głowacki, M.; Mazurkiewicz, A.; Skórczewska, K.; Lewandowski, K.; Smyk, E.; Branco, R. Effect of Thermal Shock Conditions on the Low-Cycle Fatigue Performance of 3D-Printed Materials: Acrylonitrile Butadiene Styrene, Acrylonitrile-Styrene-Acrylate, High-Impact Polystyrene, and Poly(Lactic Acid). Polymers 2024, 16, 1823. [Google Scholar] [CrossRef]
- Kantaros, A.; Soulis, E.; Petrescu, F.I.T.; Ganetsos, T. Advanced Composite Materials Utilized in FDM/FFF 3D Printing Manufacturing Processes: The Case of Filled Filaments. Materials 2023, 16, 6210. [Google Scholar] [CrossRef]
- Vidhu, N.; Gupta, A.; Salajeghe, R.; Spangenberg, J.; Marla, D. A Computational Model for Stereolithography Apparatus (SLA) 3D Printing. Prog. Addit. Manuf. 2023, 9, 1605–1619. [Google Scholar] [CrossRef]
- Goodarzi Hosseinabadi, H.; Nieto, D.; Yousefinejad, A.; Fattel, H.; Ionov, L.; Miri, A.K. Ink Material Selection and Optical Design Considerations in DLP 3D Printing. Appl. Mater. Today 2023, 30, 101721. [Google Scholar] [CrossRef]
- Momeni, F.M.; Mehdi Hassani, N.S.; Liu, X.; Ni, J. A Review of 4D Printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T.; Dunn, M.L.; Qi, H.J. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2019, 29, 1805290. [Google Scholar] [CrossRef]
- Choi, J.; Kwon, O.-C.; Jo, W.; Lee, H.J.; Moon, M.-W. 4D Printing Technology: A Review. 3D Print. Addit. Manuf. 2015, 2, 159–167. [Google Scholar] [CrossRef]
- Chu, H.; Yang, W.; Sun, L.; Cai, S.; Yang, R.; Liang, W.; Yu, H.; Liu, L. 4D Printing: A Review on Recent Progresses. Micromachines 2020, 11, 796. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Piromalis, D. 3D and 4D Printing as Integrated Manufacturing Methods of Industry 4.0. Am. J. Eng. Appl. Sci. 2023, 16, 12–22. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Piromalis, D. 4D Printing: Technology Overview and Smart Materials Utilized. J. Mechatron. Robot. 2023, 7, 1–14. [Google Scholar] [CrossRef]
- ISO/ASTM 52900:2021. Available online: https://www.iso.org/standard/74514.html (accessed on 5 July 2024).
- Dey, A.; Yodo, N. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. J. Manuf. Mater. Process. 2019, 3, 64. [Google Scholar] [CrossRef]
- Solomon, I.J.; Sevvel, P.; Gunasekaran, J. A Review on the Various Processing Parameters in FDM. Mater. Today 2021, 37, 509–514. [Google Scholar] [CrossRef]
- Kantaros, A.; Karalekas, D. FBG Based in Situ Characterization of Residual Strains in FDM Process. In Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8; Springer International Publishing: Cham, Switzerland, 2014; pp. 333–337. ISBN 9783319008752. [Google Scholar]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef]
- Ma, X.L. Research on Application of SLA Technology in the 3D Printing Technology. Appl. Mech. Mater. 2013, 401, 938–941. [Google Scholar] [CrossRef]
- Mukhtarkhanov, M.; Perveen, A.; Talamona, D. Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines 2020, 11, 946. [Google Scholar] [CrossRef]
- Taormina, G.; Sciancalepore, C.; Messori, M.; Bondioli, F. 3D Printing Processes for Photocurable Polymeric Materials: Technologies, Materials, and Future Trends. J. Appl. Biomater. Funct. Mater. 2018, 16, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Shields, G. Design for SLA 3D Printing: The Ultimate Guide. Available online: https://www.printpool.co.uk/articles/design-for-sla-3d-printing-the-ultimate-guide (accessed on 10 September 2024).
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-Curing 3D Printing Technique and Its Challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Guide to Post-Processing and Finishing SLA 3D Prints. Available online: https://formlabs.com/eu/blog/post-processing-and-finishing-sla-prints/ (accessed on 5 July 2024).
- Kantaros, A.; Ganetsos, T.; Petrescu, F.I.T.; Ungureanu, L.M.; Munteanu, I.S. Post-Production Finishing Processes Utilized in 3D Printing Technologies. Processes 2024, 12, 595. [Google Scholar] [CrossRef]
- Manoj Prabhakar, M.; Saravanan, A.K.; Haiter Lenin, A.; Jerin Leno, I.; Mayandi, K.; Sethu Ramalingam, P. A Short Review on 3D Printing Methods, Process Parameters and Materials. Mater. Today 2021, 45, 6108–6114. [Google Scholar] [CrossRef]
- Barakh Ali, S.F.; Mohamed, E.M.; Ozkan, T.; Kuttolamadom, M.A.; Khan, M.A.; Asadi, A.; Rahman, Z. Understanding the Effects of Formulation and Process Variables on the Printlets Quality Manufactured by Selective Laser Sintering 3D Printing. Int. J. Pharm. 2019, 570, 118651. [Google Scholar] [CrossRef]
- Guide to Selective Laser Sintering (SLS) 3D Printing. Available online: https://formlabs.com/eu/blog/what-is-selective-laser-sintering/ (accessed on 5 July 2024).
- Introducing Formlabs’ First Flexible SLS 3D Printing Material: TPU 90A. Available online: https://formlabs.com/blog/flexible-sls-3d-printing-material-tpu-90a/ (accessed on 5 July 2024).
- Li, Y.; Ren, X.; Zhu, L.; Li, C. Biomass 3D Printing: Principles, Materials, Post-Processing and Applications. Polymers 2023, 15, 2692. [Google Scholar] [CrossRef]
- Subramaniam, S.R.; Samykano, M.; Selvamani, S.K.; Ngui, W.K.; Kadirgama, K.; Sudhakar, K.; Idris, M.S. 3D Printing: Overview of PLA Progress. AIP Conf. Proc. 2019, 2059, 020015. [Google Scholar]
- Raj, S.A.; Muthukumaran, E.; Jayakrishna, K. A Case Study of 3D Printed PLA and Its Mechanical Properties. Mater. Today 2018, 5, 11219–11226. [Google Scholar] [CrossRef]
- Hasan, M.R.; Davies, I.J.; Pramanik, A.; John, M.; Biswas, W.K. Potential of Recycled PLA in 3D Printing: A Review. Sustain. Manuf. Serv. Econ. 2024, 3, 100020. [Google Scholar] [CrossRef]
- Dubey, S.P.; Thakur, V.K.; Krishnaswamy, S.; Abhyankar, H.A.; Marchante, V.; Brighton, J.L. Progress in Environmental-Friendly Polymer Nanocomposite Material from PLA: Synthesis, Processing and Applications. Vacuum 2017, 146, 655–663. [Google Scholar] [CrossRef]
- Tümer, E.H.; Erbil, H.Y. Extrusion-Based 3D Printing Applications of PLA Composites: A Review. Coatings 2021, 11, 390. [Google Scholar] [CrossRef]
- Hu, X.; Guo, Y.; Chen, L.; Wang, X.; Li, L.; Wang, Y. A Novel Polymeric Intumescent Flame Retardant: Synthesis, Thermal Degradation Mechanism and Application in ABS Copolymer. Polym. Degrad. Stab. 2012, 97, 1772–1778. [Google Scholar] [CrossRef]
- Anthony Xavior, M.; Nishanth, D.; Navin Kumar, N.; Jeyapandiarajan, P. Synthesis and Testing of FGM Made of ABS Plastic Material. Mater. Today 2020, 22, 1838–1844. [Google Scholar] [CrossRef]
- Chohan, J.S.; Singh, R.; Boparai, K.S. Post-Processing of ABS Replicas with Vapour Smoothing for Investment Casting Applications. Proc. Nat. Acad. Sci. India Sect. A 2022, 92, 97–102. [Google Scholar] [CrossRef]
- Demircali, A.A.; Yilmaz, D.; Yilmaz, A.; Keskin, O.; Keshavarz, M.; Uvet, H. Enhancing Mechanical Properties and Surface Quality of FDM-Printed ABS: A Comprehensive Study on Cold Acetone Vapor Treatment. Int. J. Adv. Manuf. Technol. 2024, 130, 4027–4039. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Schüürmann, J.; Berto, F.; Reinicke, T. On the Post-Processing of 3D-Printed ABS Parts. Polymers 2021, 13, 1559. [Google Scholar] [CrossRef] [PubMed]
- Christiyan, K.G.J.; Chandrasekhar, U.; Venkateswarlu, K. A Study on the Influence of Process Parameters on the Mechanical Properties of 3D Printed ABS Composite. IOP Conf. Ser. Mater. Sci. Eng. 2016, 114, 012109. [Google Scholar] [CrossRef]
- Wojnowski, W.; Kalinowska, K.; Gębicki, J.; Zabiegała, B. Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry. Sensors 2020, 20, 5531. [Google Scholar] [CrossRef]
- Lukianchuk, I.; Tulashvili, Y.; Podolyak, V.; Horbariuk, R.; Kovalchuk, V.; Bazyl, S.M. Didactic Principles Of Education Students 3D-Printing. Int. J. Comput. Sci. Netw. Secur. 2022, 22, 443–450. [Google Scholar] [CrossRef]
- Latko-Durałek, P.; Dydek, K.; Boczkowska, A. Thermal, Rheological and Mechanical Properties of PETG/rPETG Blends. J. Polym. Environ. 2019, 27, 2600–2606. [Google Scholar] [CrossRef]
- Jin, C.; Ma, F.; Li, C.; Tu, Z.; Wang, H.; Wei, Z. Kilogram-Scale Preparation of Sustainable PETG Modified with a Biobased Cyclic Diol Derived from 5-Hydroxymethylfurfural: From Synthesis to Properties. Eur. Polym. J. 2021, 161, 110832. [Google Scholar] [CrossRef]
- Blanco, I. A Brief Review of the Applications of Selected Thermal Analysis Methods to 3D Printing. Thermo 2022, 2, 74–83. [Google Scholar] [CrossRef]
- Prajapati, S.; Sharma, J.K.; Kumar, S.; Pandey, S.; Pandey, M.K. A Review on Comparison of Physical and Mechanical Properties of PLA, ABS, TPU, and PETG Manufactured Engineering Components by Using Fused Deposition Modelling. Mater. Today 2024. [Google Scholar] [CrossRef]
- Szykiedans, K.; Credo, W.; Osiński, D. Selected Mechanical Properties of PETG 3-D Prints. Procedia Eng. 2017, 177, 455–461. [Google Scholar] [CrossRef]
- Interpreting Retraction Tests for PETG. Available online: https://forum.snapmaker.com/t/interpreting-retraction-tests-for-petg/20251 (accessed on 8 July 2024).
- Xiao, J.; Gao, Y. The Manufacture of 3D Printing of Medical Grade TPU. Prog. Addit. Manuf. 2017, 2, 117–123. [Google Scholar] [CrossRef]
- Sánchez-Calderón, I.; Bernardo, V.; Santiago-Calvo, M.; Naji, H.; Saiani, A.; Rodríguez-Pérez, M. Effect of the Molecular Structure of TPU on the Cellular Structure of Nanocellular Polymers Based on PMMA/TPU Blends. Polymers 2021, 13, 3055. [Google Scholar] [CrossRef]
- Desai, S.M.; Sonawane, R.Y.; More, A.P. Thermoplastic Polyurethane for Three-dimensional Printing Applications: A Review. Polym. Adv. Technol. 2023, 34, 2061–2082. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 3D Printing of PLA-TPU with Different Component Ratios: Fracture Toughness, Mechanical Properties, and Morphology. J. Mater. Res. Technol. 2022, 21, 3970–3981. [Google Scholar] [CrossRef]
- Flexible. Available online: https://www.simplify3d.com/resources/materials-guide/flexible/ (accessed on 8 July 2024).
- Rodríguez-Parada, L.; de la Rosa, S.; Mayuet, P.F. Influence of 3D-Printed TPU Properties for the Design of Elastic Products. Polymers 2021, 13, 2519. [Google Scholar] [CrossRef]
- Kim, H.-r.; Lee, S.-h. Mechanical Properties of 3D Printed Re-entrant Pattern with Various Hardness Types of TPU Filament Manufactured through FDM 3D Printing. Text. Sci. Eng. 2020, 57, 166–176. [Google Scholar] [CrossRef]
- Wang, F.; Chong, Y.; Wang, F.; He, C. Photopolymer Resins for Luminescent Three-dimensional Printing. J. Appl. Polym. Sci. 2017, 134, 44988. [Google Scholar] [CrossRef]
- Rehbein, T.; Johlitz, M.; Lion, A.; Sekmen, K.; Constantinescu, A. Temperature- and Degree of Cure-Dependent Viscoelastic Properties of Photopolymer Resins Used in Digital Light Processing. Prog. Addit. Manuf. 2021, 6, 743–756. [Google Scholar] [CrossRef]
- Zakeri, S.; Vippola, M.; Levänen, E. A Comprehensive Review of the Photopolymerization of Ceramic Resins Used in Stereolithography. Addit. Manuf. 2020, 35, 101177. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, P. 3D Printing of Photopolymers. Polym. Chem. 2018, 9, 1530–1540. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing; Springer: Boston, MA, USA, 2010; ISBN 9781441911193. [Google Scholar]
- Bambu Lab X1-Carbon 3D Printer. Available online: https://eu.store.bambulab.com/en-gr/collections/3d-printer/products/x1-carbon (accessed on 17 July 2024).
- K1 Max 3D Printer. Available online: https://www.creality.com/products/creality-k1-max-3d-printer (accessed on 17 July 2024).
- Halot-Mage, S. Available online: https://www.creality.com/products/creality-halot-mage-s (accessed on 17 July 2024).
- Anycubic 3D Printer. Available online: https://www.anycubic.com/en/photon-m7-pro (accessed on 17 July 2024).
- Form 3L. Available online: https://formlabs.com/3d-printers/form-3l/ (accessed on 17 July 2024).
- Paraskevoudis, K.; Karayannis, P.; Koumoulos, E.P. Real-Time 3D Printing Remote Defect Detection (Stringing) with Computer Vision and Artificial Intelligence. Processes 2020, 8, 1464. [Google Scholar] [CrossRef]
- Yean, F.P.; Chew, W.J. Detection of Spaghetti and Stringing Failure in 3D Printing. In Proceedings of the 2024 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri Sarawak, Malaysia, 17–19 January 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 293–298. [Google Scholar]
- Vassilakos, A.; Giannatsis, J.; Dedoussis, V. Fabrication of Parts with Heterogeneous Structure Using Material Extrusion Additive Manufacturing. Virtual Phys. Prototyp. 2021, 16, 267–290. [Google Scholar] [CrossRef]
- Kantaros, A.; Giannatsis, J.; Karalekas, D. A novel strategy for the incorporation of optical sensors in Fused Deposition Modeling parts. In Proceedings of the International Conference on Advanced Manufacturing Engineering and Technologies, Stockolm, Sweden, 27–30 October 2013; Universitets Service US AB, KTH Royal Institite of Technology: Stockholm, Sweden, 2013. ISBN 978-91-7501-893-5. Available online: https://www.researchgate.net/publication/269631461_A_novel_strategy_for_the_incorporation_of_optical_sensors_in_FDM_parts (accessed on 10 November 2022).
- Kaščak, J.; Kočiško, M.; Vodilka, A.; Török, J.; Coranič, T. Adhesion Testing Device for 3D Printed Objects on Diverse Printing Bed Materials: Design and Evaluation. Appl. Sci. 2024, 14, 945. [Google Scholar] [CrossRef]
- Conte, R. Assessments of Staked Hybrid Joints Made by Studs 3D Printed at Different Manufacturing Conditions. In Materials Research Proceedings; Materials Research Forum LLC.: Millersville, PA, USA, 2024; Volume 41, pp. 1660–1667. [Google Scholar]
- Beșliu-Băncescu, I.; Tamașag, I.; Slătineanu, L. Influence of 3D Printing Conditions on Some Physical–Mechanical and Technological Properties of PCL Wood-Based Polymer Parts Manufactured by FDM. Polymers 2023, 15, 2305. [Google Scholar] [CrossRef]
Printer’s Name | Raw Material | Modus Operandi | Advantages | Disadvantages | Price in EUR |
---|---|---|---|---|---|
Bambu Lab X1-Carbon | Thermoplastic Filament | Fused Deposition Modelling [FDM] | High printing speed Multicolor and multi-material capability High printing speed LIDAR-assisted automatic calibration and inspection | PEI textured plate not included Default purging process wastes material | 1562 |
Nozzle replacement is a complicated process | |||||
Creality K1 Max | Thermoplastic Filament | Fused Deposition Modelling [FDM] | Big build volume High printing speed Low acquisition price | Complicated filament path Requires glue stick on platform Users have mentioned frame issues | 849 |
Creality HALOT-MAGE S 14K | Photopolymer Resin | Digital Light Processing (DLP) | 14K ultra-high-resolution LCD screen Fast-moving build plate Low acquisition price | Very noisy | |
Needs familiarization from the end-user | 499 | ||||
Anycubic Photon Mono M7 Pro | Photopolymer Resin | Digital Light Processing (DLP) | 14K ultra-high-resolution LCD screen Auto resin refill/withdrawal system High-speed printing capabilities | High upfront cost Not ergonomic Design | 507 |
Formlabs Form 3L | Photopolymer Resin | Laser-Powered Stereolithography (SLA) | Large build volume User-friendly slicing software Wide choice of resins | Price Proprietary system Complicated non-open-source infrastructure | 5535 |
Feature | Bambu Lab X1-Carbon | Creality K1 Max |
---|---|---|
Build Volume | 256 × 256 × 256 mm | 300 × 300 × 300 mm |
Printing Speed | Up to 500 mm/s | Up to 600 mm/s |
Layer Resolution | 0.05–0.3 mm | 0.1–0.4 mm |
Nozzle Diameter | 0.4 mm (standard), optional nozzles | 0.4 mm (standard) |
Extruder Type | Direct Drive | Direct Drive |
Filament Compatibility | PLA, ABS, PETG, TPU, Nylon, Carbon Fiber | PLA, ABS, PETG, TPU |
Multi-Material Support | Yes | No |
Bed Leveling | Automatic | Automatic |
Connectivity | USB, Wi-Fi, Ethernet | USB, Wi-Fi |
Touchscreen | Yes (color touchscreen) | Yes (color touchscreen) |
Camera Monitoring | Yes | Yes |
Enclosure | Fully enclosed | Open frame with optional enclosure |
Print Bed | Heated bed with PEI coating | Heated bed |
Noise Level | Moderate to high at high speeds | Moderate |
Software | Bambu Studio | Creality Slicer, Cura |
Power Loss Recovery | Yes | Yes |
Filament Sensor | Yes | Yes |
Dimensions | 389 × 389 × 458 mm | 522 × 520 × 657 mm |
Weight | 14 kg | 20 kg |
Price Range | EUR 1100–EUR 1400 | EUR 700–EUR 1000 |
Feature | Creality HALOT-MAGE S 14K | Anycubic Photon Mono M7 Pro | Formlabs Form 3L |
---|---|---|---|
Technology | LCD Resin | LCD Resin | SLA |
Build Volume | 293 × 165 × 300 mm | 219 × 123 × 250 mm | 335 × 200 × 300 mm |
Layer Resolution | 0.05–0.2 mm | 0.025–0.05 mm | 0.025–0.3 mm |
Printing Speed | ≤150 mm/h | 170 mm/h | 100 mm/h |
Material Compatibility | Resin | Resin | Resin |
Connectivity | USB | USB | Ethernet, Wi-Fi, USB |
Touchscreen | Yes | Yes | Yes |
Software | Creality slicer | Anycubic Photon Workshop | PreForm |
Bed Leveling | Manual | Manual | Automated |
Enclosure | Closed | Closed | Closed |
Noise Level | 49 dB (1 m) | Not specified | Not specified |
Price Range | $800–$1000 | $400–$600 | $10,000–$15,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantaros, A.; Petrescu, F.I.T.; Brachos, K.; Ganetsos, T.; Petrescu, N. Evaluating Benchtop Additive Manufacturing Processes Considering Latest Enhancements in Operational Factors. Processes 2024, 12, 2334. https://doi.org/10.3390/pr12112334
Kantaros A, Petrescu FIT, Brachos K, Ganetsos T, Petrescu N. Evaluating Benchtop Additive Manufacturing Processes Considering Latest Enhancements in Operational Factors. Processes. 2024; 12(11):2334. https://doi.org/10.3390/pr12112334
Chicago/Turabian StyleKantaros, Antreas, Florian Ion Tiberiu Petrescu, Konstantinos Brachos, Theodore Ganetsos, and Nicolae Petrescu. 2024. "Evaluating Benchtop Additive Manufacturing Processes Considering Latest Enhancements in Operational Factors" Processes 12, no. 11: 2334. https://doi.org/10.3390/pr12112334
APA StyleKantaros, A., Petrescu, F. I. T., Brachos, K., Ganetsos, T., & Petrescu, N. (2024). Evaluating Benchtop Additive Manufacturing Processes Considering Latest Enhancements in Operational Factors. Processes, 12(11), 2334. https://doi.org/10.3390/pr12112334