Experimental Application of Beneficial, Freeze-Dried Strain Enterococcus durans ED 26E/7 with Postbiotic Activity in Different Yogurts, Its Survival and Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enterococcus durans ED 26E/7, Testing its Susceptibility to Antibiotica Using the E-Strip Method
2.2. Antimicrobial Activity, Storage Stability, and Character of Postbiotic Substance (Concentrated Bacteriocin Substance) ED 26E/7
2.3. Testing Safety and Stability of ED 26E/7 at Days 15, 30, 60, 90, and 120 Using Balb/c Mice
2.4. ED26E/7 Strain Freeze-Drying, Its Preparation for Application into Yogurts, and Its Stability and Survival
2.5. Statistical Analysis
3. Results
3.1. E-Strip Susceptibility Test, Antimicrobial Activity of Postbiotic Substance, and Its Character
3.2. Safety and Stability of ED26E/7 at Days 15, 30, 60, 90 and 120 Using Balb/c Mice
3.3. Stability and Survival of Postbiotic Active Strain ED 26E/7 Strain in Freeze-Dried Form in Yogurts
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savaino, D.A.; Hutkins, R.W. Yogurt, cultured fermented milk, and health: A systematic review. Nut. Rev. 2021, 79, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Philanto, A.; et al. Health benefits of fermented foods:microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.; Turgeon, S.L. Studying stirred yogurt microstructure and its correlation to physical properties: A review. Food Hydrocoll. 2021, 121, 106970. [Google Scholar] [CrossRef]
- Ajayi, A.S.; Ogunleye, B.O.; Oluwasola, M.A.; Ohore, H.U.; Akinnola, O.O. Functional foods and the gut microbiome. Trop. J. Nat. Prod. Res. 2020, 11, 861–865. [Google Scholar]
- Koumpouli, D.; Koiumpouli, V.; Koutelidakis, A.E. Functional foods, gut microbiome and association with obesity and metabolic syndrome: A literature review. Appl. Sci. 2024, 14, 5578. [Google Scholar] [CrossRef]
- Kumar, L.S.; Pugalenthi, L.S.; Ahmad, M.; Reddy, S.; Barkhane, Z.; Elmadi, J. Probiotics in irritable bowel syndrome: A review of their therapeutic role. Cureus 2022, 14, 23880. [Google Scholar] [CrossRef]
- Lauková, A.; Tomáška, M.; Kmeť, V.; Strompfová, V.; Pogány Simonová, M.; Dvorožňáková, E. Slovak local ewes milk lump cheese, a source of beneficial Enterococcus durans strain. Foods 2021, 10, 3091. [Google Scholar] [CrossRef]
- Fischer, S.W.; Titgemeyer, F. Protective cultures in food products: From science to market. Foods 2023, 12, 1541. [Google Scholar] [CrossRef]
- Franz, C.M.A.P.; van Belkum, M.J.; Holzapfel, W.H.; Abriouel, H.; Gálvéz, A. Diversity of enterococcal bacteriocins and their grouping in a new chlassification scheme. FEMS Microbiol. Rev. 2007, 31, 293–310. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroent. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Coelho, M.S.; de las Mellado, M.M. Bioactive compounds as ingredients of functional foods: Polyphenols, carotenoids, peptides from animal and plant sources new. In Maira RSC; Woodhead Publishing-Elsevier: Cambridge, UK, 2019; pp. 129–142. [Google Scholar]
- Parente, E.; Ricciardi, A.; Zotte, T. The microbiota of dairy milk: A review. Int. Dairy J. 2020, 104, 104714. [Google Scholar] [CrossRef]
- Todorov, S.D.; Stojanovski, S.; Iliev, I.; Menchova, P.; Nero, L.A.; Ivanova, I.V. Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product “lukanka”. Braz. J. Microbiol. 2017, 48, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overwiev of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef]
- On-line: What are functional Foods? J. Nutr.-Nutr. Sci. Health Diet 2002.
- Foulquié Moreno, M.R.; Sarantinopoulos, P.; Tsakalidou, E.; De Vuyst, L. The role and application of enterococci in food and health. Int. J. Food Microbiol. 2006, 106, 1–24. [Google Scholar] [CrossRef]
- Lauková, A.; Pogány Simonová, M.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Plachá, I.; Čobanová, K.; Formelová, Z.; Ondruška, Ľ.; Štrkolcová, G.; et al. Beneficial effect of bacteriocin-producing strain Enterococcus durans ED26E/7 in model experiment using broiler rabbits. Czech J. Anim. Sci. 2017, 62, 168–177. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Formelová, Z.; Chrenková, M.; Žitňan, R.; Miltko, R.; Belzecki, G. Effect of diet supplementation with Enterococcus durans ED26E/7 and its durancin ED26E/7 on growth performance, caecal enzymatic activity, jejunal morphology and meat properties of broiler rabbits. Ann. Anim. Sci. 2022, 22, 221–235. [Google Scholar] [CrossRef]
- Todorov, S.D.; Wachsman, M.; tomé, E.; Vaz-Velho, M.; Vitanova Ivanova, I. Plasmid-Associated bacteriocin produced by Pediococcus pentosaceus isolated from smoked salmon: Partial characterization and some aspects of his mode of action. Prob. Antimicrob. Prot. 2024, 16, 394–412. [Google Scholar] [CrossRef]
- De Vuyst, L.; Calleawert, R.; Pot, B. Characterization and antagonistic activity of Lactobacillus amylovorus DCE471 and large scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 19, 9–20. [Google Scholar] [CrossRef]
- Vargová, M.; Revajová, V.; Lauková, A.; Hurníková, Z.; Dvorožňáková, E. Modulatory effect of beneficial enterococci and their enterocins on the blood phagocytosis in murine experimental trichinellosis. Life 2023, 13, 1930. [Google Scholar] [CrossRef]
- Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Focková, V.; Zábolyová, N.; Bino, E.; Grešáková, Ľ.; Žitňan, R.; Formelová, Z.; Ščerbová, J.; et al. Dairy-derived and bacteriocin-producing strain Lactiplantibacillus plantarum LP17L/1: An assessment of its safety and effect using broiler rabbits. Front. Biosci.-Elite 2024, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Nemcová, R.; Bomba, A.; Herich, R.; Gancarčíková, S. Colonization capability of orally administered lactobacillus strain in the gut of gnotobiotic piglets. Deut. Tierarztl. Wochs. 1998, 105, 199–210. [Google Scholar]
- Lauková, A.; Maďar, M.; Zábolyová, N.; Troscianczyk, A.; Pogány Simonová, M. Fortification of goat milk yogurts with encapsulated postbiotic active lactococci. Life 2024, 14, 1147. [Google Scholar] [CrossRef] [PubMed]
- Bankole Odunayo, A.; Anyachukwu Irondi, E.; Wasiu, A.; Oladipo Ajani, E. Application of natural and modified additives in yogurt formulation: Types, production, and rheological and nutraceutical benefits. Front. Nut. 2023, 10, 1257439. [Google Scholar] [CrossRef]
- Krishna, K.V.; Koujalagi, K.; Surya, R.U.; Namratha, M.P.; Malaviya, A. Enterococcus species and their probiotic potential: Current status and future prospects. Appl. Biol. Biotechnol. 2023, 11, 36–44. [Google Scholar] [CrossRef]
- Lauková, A.; Styková, E.; Focková, V.; Trosciancyk, A.; Maďar, M. Postbiotic activity of Enterococcus asini EAs 1/11D27 strain originating from the Norik from Muráň breed. Int. J. Equi. Sci. 2024, 3, 51–57. [Google Scholar]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Strompfová, V.; Miltko, R.; Blezecki, G. Enterocins as novel feed additives in rabbit diet: Enterocin Ent M and Durancin Ent ED26E/7, their combination, and effects on microbiota, caecal fermentation, and enzymatic activity. Prob. Antimicrob. Prot. 2021, 13, 1433–1442. [Google Scholar] [CrossRef]
- Rahmeh, R.; Abkar, A.; Kishk, M.; Al-Onaizi, T.; Al-Shatti, A.; Shajan, A.; Akbar, B.; Al-Mitairi, S.; Yateem, A. Characterization of semipurified enterocins produced by Enterococcus faecium strain isolated from raw camel milk. J. Dairy Sci. 2018, 101, 4944–4952. [Google Scholar] [CrossRef]
Indicator Strains | No. Tested/No. Inhibited | Activity (AU/mL) |
---|---|---|
E. hirae (canine feces) | 30/30 | 200–25,600 |
E. hirae (rabbits, hen feces) | 10/10 | 1600–6400 |
E. hirae (horse feces, serval, fog, beaver, duck) | 12/12 | 1600–6400 |
MRS Staphylococcus spp. (horses, dogs, roe deer) | 16/16 | 1600–3200 |
MRS S. epidermidis (feces of sheep) | 7/3 | 400–12,800 |
MRS S. equorum (feces of sheep) | 7/5 | 400–1600 |
MRS S. pseudintermedius (feces of sheep) | 7/7 | 100–25,600 |
MRS S. saprophyticus (feces of sheep) | 2/0 | - |
MRS S. haemolyticus (feces of sheep) | 1/1 | 3200 |
MRS Staphylococcus spp. | 12/9 | 200–25,600 |
Escherichia coli (feces of cats) | 46/40 | 100 |
ED26E/7 | Enterococci | Lactic Acid Bacteria | Coliforms | |
---|---|---|---|---|
Day 0 (n = 6) | nt | 4.79 ± 0.21 | 6.10 ± 0.00 | 2.98 ± 0.43 |
Day 15/E (n = 3) | 2.68 ± 0.28 b | 3.58 ± 0.25 a | 5.51 ± 0.44 a | 3.80 ± 0.03 a |
Day 15/C | nt | 2.83 ± 0.46 | 7.10 ± 0.00 | 4.41 ± 0.10 |
Day 30/E | 2.15 ± 0.22 c | 3.56 ± 1.25 c | 6.51 ± 0.15 b | 3.93 ± 0.12 c |
Day 30/C | nt | 3.72 ± 0.08 | 6.98 ± 0.70 | 5.24 ± 0.49 |
Day 60/E | 4.77 ± 0.40 a | 5.69 ± 1.44 d | 7.71 ± 0.37 c | 3.42 ± 0.09 |
Day 60/C | nt | 7.28 ± 0.71 | 7.06 ± 0.84 | 4.71 ± 0.22 |
Day90/E | 3.60 ± 0.00 e | 8.73 ± 0.01 b | 9.10 ± 0.00 d | 2.17 ± 0.22 b |
Day 90/C | nt | 8.63 ± 0.44 | 8.52 ± 0.38 | 3.28 ± 0.00 |
Day120/E | 0.90 ± 0.00 d | 5.54 ± 1.33 e | 6.95 ± 0.27 e | 3.19 ± 0.42 |
Day 120/C | nt | 6.94 ± 0.23 | 7.06 ± 0.08 | 4.42 ± 0.44 |
CMY/pH | ED 26E/7 | LAB | GMY/pH | ED 26E/7 | LAB | EGMY/pH | ED 26E/7 | LAB | |
---|---|---|---|---|---|---|---|---|---|
0/1 C | 3.90 | nt | 5.10 ± 0.50 | 3.40 | nt | 10.85 ± 1.5 | 4.70 | nt | 4.99 ± 0.70 |
0/1 E | 3.90 | nt | 5.10 ± 0.50 | 3.40 | nt | 10.10 ± 1.00 | 4.70 | nt | 4.99 ± 0.80 |
24 h C | 3.90 | nt | 5.10 ± 0.50 | 3.40 | nt | 10.10 ± 0.90 | 4.89 | nt | 4.70 ± 0.70 |
24 h E | 3.84 | 1.90 ± 0.09 | 3.70 ± 0.80 | 3.40 | 1.00 ± 0.00 | 10.10 ± 0.90 | 4.75 | 4.08 ± 0.90 | 6.01 ± 0.80 |
7/C | 4.06 | nt | 6.10 ± 0.80 | 3.29 | nt | 9.98 ± 0.80 | 4.89 | nt | 6.10 ± 0.80 |
7/E | 4.01 | 0.90 ± 0.09 | 6.10 ± 0.80 | 3.20 | 0.90 ± 0.00 | 9.17 ± 0.70 | 3.75 | 3.69 ± 0.60 | 6.10 ± 0.80 |
10/C | 3.78 | nt | 5.20 ± 0.60 | 3.15 | nt | 9.88 ± 1.6 | nt | nt | nt |
10/E | 4.53 | 0.90 ± 0.09 | 5.10 ± 0.50 | 3.05 | 0.90 ± 0.00 | 9.10 ± 0.70 | nt | nt | nt |
14/C | 3.24 | nt | 5.10 ± 0.50 | 3.13 | nt | 9.74 ± 0.70 | 3.75 | nt | 6.10 ± 0.80 |
14/E | 3.59 | 1.60 ± 0.09 | 5.10 ± 0.50 | 3.01 | 0.90 ± 0.00 | 10.1 ± 1.00 | 3.72 | 2.99 ± 0.50 | 6.10 ± 0.80 |
ED 26E/7 | Cow Milk Yogurt | Goat Milk Yogurt | Ewe–Goat Milk Yogurt |
---|---|---|---|
24h | 1.90 ± 0.09 | 1.10 ± 0.09 | 4.08 ± 0.90 |
Day 7 | 0.90 ± 0.00 | 0.90 ± 0.00 | 3.69 ± 0.60 |
Day 10 | 0.90 ± 0.00 | 0.90 ± 0.00 | nt |
Day 14 | 1.60 ± 0.09 | 0.90 ± 0.00 | 2.99 ± 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauková, A.; Dvorožňáková, E.; Petrová, M.; Maloveská, M.; Bino, E.; Zábolyová, N.; Kandričáková, A.; Pogány Simonová, M. Experimental Application of Beneficial, Freeze-Dried Strain Enterococcus durans ED 26E/7 with Postbiotic Activity in Different Yogurts, Its Survival and Stability. Processes 2024, 12, 2138. https://doi.org/10.3390/pr12102138
Lauková A, Dvorožňáková E, Petrová M, Maloveská M, Bino E, Zábolyová N, Kandričáková A, Pogány Simonová M. Experimental Application of Beneficial, Freeze-Dried Strain Enterococcus durans ED 26E/7 with Postbiotic Activity in Different Yogurts, Its Survival and Stability. Processes. 2024; 12(10):2138. https://doi.org/10.3390/pr12102138
Chicago/Turabian StyleLauková, Andrea, Emília Dvorožňáková, Miroslava Petrová, Marcela Maloveská, Eva Bino, Natália Zábolyová, Anna Kandričáková, and Monika Pogány Simonová. 2024. "Experimental Application of Beneficial, Freeze-Dried Strain Enterococcus durans ED 26E/7 with Postbiotic Activity in Different Yogurts, Its Survival and Stability" Processes 12, no. 10: 2138. https://doi.org/10.3390/pr12102138
APA StyleLauková, A., Dvorožňáková, E., Petrová, M., Maloveská, M., Bino, E., Zábolyová, N., Kandričáková, A., & Pogány Simonová, M. (2024). Experimental Application of Beneficial, Freeze-Dried Strain Enterococcus durans ED 26E/7 with Postbiotic Activity in Different Yogurts, Its Survival and Stability. Processes, 12(10), 2138. https://doi.org/10.3390/pr12102138