The Effects of Different Cooking Systems on Changes in the Bioactive Compounds, Polyphenol Profiles, Biogenic Elements, and Protein Contents of Cauliflower Florets
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Methods
2.2.1. Boiling and Heating Processes
2.2.2. Moisture Content
2.2.3. Determination of Protein Contents of Cauliflower Samples
2.2.4. Extraction Procedure
2.2.5. Total Phenolic Content
2.2.6. Total Flavonoid Amount
2.2.7. Antioxidant Activity
2.2.8. Phenolic Compounds
2.2.9. Determination of Minerals
2.3. Statistical Analyses
3. Results and Discussion
3.1. The Moisture Contents and Bioactive Properties of Fresh and Cooked Cauliflower Florets
3.2. The Phenolic Constituents of Fresh and Cooked Cauliflower Florets
3.3. The Crude Protein and Biogenic Element Contents of Fresh and Cooked Cauliflower Florets
4. Principal Component Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tavallı, İ.E.; Maltaş, A.Ş.; Uz, İ.; Kaplan, M. Karnabaharın (Brassica oleracea var. botrytis) verim, kalite ve mineral beslenme durumu üzerine vermikompostun etkisi The effect of vermicompost on yield, quality and nutritional status of cauliflower (Brassica oleracea var. botrytis). Akdeniz Univ. Ziraat Fak. Derg. 2013, 26, 115–120. [Google Scholar]
- Ahmed, F.A.; Ali, R.F.M. Bioactive compounds and antioxidant activity of fresh and processed white cauliflower. BioMed Res. Int. 2013, 2013, 367819. [Google Scholar] [CrossRef]
- FAOSTAT. Database. Agricultural Data. 2004. Available online: http://www.fao.org/home/en/ (accessed on 24 September 2024).
- TÜİK. Türkiye İstatistik Kurumu. 2021. Available online: http://www.tuik.gov.tr (accessed on 1 April 2022).
- Hwang, E.-S. Effect of Cooking Method on Antioxidant Compound Contents in Cauliflower. Prev. Nutr. Food Sci. 2019, 24, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, T.; Verkerk, R.; Dekker, M. Isothiocyanates from Brassica vegetables-effects of processing, cooking, mastication, and digestion. Mol. Nutr. Food Res. 2018, 62, e1701069. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.R.; Kwak, J.H. Seasonal variation in phytochemicals and antioxidant activities in different tissues of various Broccoli cultivars. Afr. J. Biotechnol. 2014, 13, 604–615. [Google Scholar]
- Çelik, Y. Evaluation of efficacy of some rhizobacteria in improving growth, yield and quality of Cauliflower (Brassica oleracea var. botrytis L.). AÇÜ Orman Fac. J. 2023, 24, 113–118. [Google Scholar] [CrossRef]
- Chaudhary, A.; Sharma, U.; Vig, A.P.; Singh, B.; Arora, S. Free radical scavenging, antiproliferative activities and profiling of variations in the level of phytochemicals in different parts of broccoli (Brassica oleracea italica). Food Chem. 2014, 148, 373–380. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230–242. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Sangeeta, S.; Charu, L.M. Effect of steaming, boiling and microwave cooking on the total phenolics, flavonoids and antioxidant properties of different vegetables of Assam, India. Int. J. Food Nutr. Sci. 2013, 2, 47–53. [Google Scholar]
- Djenidi, H.; Khennouf, S.; Bouaziz, A. Antioxidant activity and phenolic content of commonly consumed fruits and vegetables in Algeria. Prog. Nutr. 2020, 22, 224–235. [Google Scholar]
- Çubukçu, H.C.; Kılıçaslan, N.S.D.; Durak, İ. Different effects of heating and freezing treatments on the antioxidant properties of broccoli, cauliflower, garlic and onion. An experimental in vitro study. Sao Paulo Med. J. 2019, 137, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Faller, A.L.K.; Fialho, E. he antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Res. Int. 2009, 42, 210–215. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Kwak, J.H. Chemical Composition and Antioxidant Activity in different Tissues of Brassica Vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.-L.; Xie, J.-F.; Li, H.-B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2012, 5, 260–266. [Google Scholar] [CrossRef]
- Koçak, N. Yiyecek İçecek Hizmetleri Yönetimi; Detay Yayıncılık: Ankara, Türkiye, 2009. [Google Scholar]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 2011, 16, 251–280. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef]
- Jahangir, M.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Health-affecting compounds in Brassicaceae. Compr. Rev. Food Sci. Food Saf. 2009, 8, 31–43. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC International: Arlington, VA, USA, 1990; Volume 1. [Google Scholar]
- Girgin, N.; El, S.N. Effects of cooking on in vitro sinigrin bioaccessibility, total phenols, antioxidant and antimutagenic activity of cauliflower (Brassica oleraceae L. var. Botrytis). J. Food Comp. Anal. 2015, 37, 119–127. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, K.W.; Park, J.B.; Lee, H.J.; Hwang, I.K. Variation in major antioxidants and total antioxidant activity of Yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. J. Agric. Food Chem. 2004, 52, 5907–5913. [Google Scholar] [CrossRef]
- Hogan, S.; Zhang, L.; Li, J.; Zoecklein, B.; Zhou, K. Antioxidant properties and bioactive components of Norton (Vitis aestivalis) and Cabernet Franc (Vitis vinifera) wine grapes. LWT—Food Sci. Technol. 2009, 42, 1269–1274. [Google Scholar] [CrossRef]
- Lee, S.K.; Mbwambo, Z.H.; Chung, H.S.; Luyengi, L.; Games, E.J.C.; Mehta, R.G. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen. 1998, 1, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Skujins, S. Handbook for ICP-AES (Varıan-Vista). In A Short Guide to Vista Series ICP-AES Operation; Varian International: Zug, Switzerland, 1998. [Google Scholar]
- Liu, H.-M.; Han, Y.-F.; Wang, N.-N.; Zheng, Y.-Z.; Wang, X.-D. Formation and antioxidant activity of maillard reaction products derived from different sugar-amino acid aqueous model systems of sesame roasting. J. Oleo Sci. 2020, 69, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Juntachote, T.; Berghofer, E. Antioxidative properties and stability of ethanolic extracts of Holy basil and Galangal. Food Chem. 2005, 92, 193–202. [Google Scholar] [CrossRef]
- Yamaguchı, T.; Mızobuchı, T.; Kajıkawa, R.; Kawashıma, H.; Mıyabe, F.; Terao, J.; Takamura, H.; Matoba, T. Radical-scavenging activity of vegetables and the effect of cooking on their activity. Food Sci. Technol. Res. 2001, 7, 250–257. [Google Scholar] [CrossRef]
- Jimenez-Monreal, A.M.; Garcıia-Diz, L.; Martinez-Tome, M.; Mariscal, M.; Murcia, M.A. Influence of cooking methods on antioxidant activity of vegetables. J. Food Sci. 2009, 74, H97–H103. [Google Scholar] [CrossRef]
- Murador, D.; Braga, A.R.; Da Cunha, D.; De Rosso, V. Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Crit. Rev. Food Sci. Nutr. 2018, 58, 169–177. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Drabinska, N.; Jez, M.; Nogueira, M. Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower. Antioxidants 2021, 10, 1597. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Kenny, O.; O’Beirne, D. The effects of washing treatment on antioxidant retention in ready-to-use iceberg lettuce. Int. J. Food Sci. Technol. 2009, 44, 1146–1156. [Google Scholar] [CrossRef]
- Volden, J.; Borge, G.I.; Hansen, M.; Bengtsson, G.B.; Wicklund, T. Processing (blanching, boiling, steaming) effects on the content of glucosinolates and antioxidant- related parameters in cauliflower (Brassica oleracea L. ssp. botrytis). LWT—Food Sci. Technol. 2009, 42, 63–73. [Google Scholar] [CrossRef]
- dos Reis, L.C.R.; de Oliveira, V.R.; Hagen, M.E.K.; Jablonski, A.; Flores, S.H.; Rios, A.O. Carotenoids, flavonoids, chloro phylls, phenolic compounds and antioxidant activity in fresh and cooked broccoli (Brassica oleracea var. avenger) and cauliflower (Brassica oleracea var. alphina F1). LWT—Food Sci. Technol. 2015, 63, 177–183. [Google Scholar] [CrossRef]
- Ali, M.A.; Islam, M.A.; Pal Torun, K. The effect of microwave roasting on the antioxidant properties of the Bangladeshi groundnut cultivar. Acta Sci. Pol. Technol. Aliment. 2016, 15, 429–438. [Google Scholar] [CrossRef]
- Wani, T.A.; Sood, M. Effect of incorporation of cauliflower leaf powder on sensory and nutritional composition of malted wheat biscuits. Afr. J. Biotechnol. 2014, 13, 1019–1026. [Google Scholar]
- Giannino, D.; Testone, G.; Nicolodi, C.; Giorgetti, L.; Bellani, L.; Gonnella, M.; Ciardi, M.; Cappuccio, P.; Moscatello, S.; Battistelli, A.; et al. Nutritive parameters and antioxidant quality of minimally processed “Cime di Rapa” (Brassica rapa subsp. sylvestris) Vary as influenced by genotype and storage time. Pol. J. Food Nutr. Sci. 2020, 70, 337–346. [Google Scholar] [CrossRef]
- Ioku, K.; Aoyama, Y.; Tokuno, A.; Terao, J.; Nakatani, N.; Takei, Y. Various cooking methods and the flavonoid content in onion. J. Nutr. Sci. Vitaminol. 2001, 47, 78–83. [Google Scholar] [CrossRef]
- Ali, A.M. Effect of food processing methods on the bioactive compound of cauliflower. Egypt. J. Agric. Res. 2015, 93, 117–131. [Google Scholar] [CrossRef]
- Vallejo, F.; Tomas-Barberan, F.A.; Garcıa-Viguera, C. Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking. J. Sci. Food Agric. 2003, 83, 1511–1516. [Google Scholar] [CrossRef]
- Heimler, D.; Vignolini, P.; Dini, M.G.; Vincieri, F.F.; Romani, A. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chem. 2006, 99, 464–469. [Google Scholar] [CrossRef]
- Sun, L.; Bai, X.; Zhuang, Y. Effect of different cooking methods on total phenolic contents and antioxidant activities of four Boletus mushrooms. J. Food Sci. Technol. 2014, 51, 3362–3368. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 2005, 70, 11–19. [Google Scholar] [CrossRef]
- Friedman, M. Food browning and its prevention: An overview. J. Agric. Food Chem. 1996, 44, 631–653. [Google Scholar] [CrossRef]
- Francisco, M.; Velasco, P.; Moreno, D.A.; Garcıa-Viguera, C.; Cartea, M.E. Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res. Int. 2010, 43, 1455–1463. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Prasad, K.; Bahadur, A.; Rai, M. Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J. Food Compos. Anal. 2007, 20, 106–112. [Google Scholar] [CrossRef]
- Scalzo, R.L.; Bianchi, G.; Genna, A.; Summa, C. Antioxidant properties and lipidic profile as quality indexes of cauliflower (Brassica oleracea L. var. botrytis) in relation to harvest time. Food Chem. 2007, 100, 1019–1025. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Häkkinen, S.T.; Aarni, M.; Suortti, T.; Lampi, A.-M.; Eurola, M.; Piironen, V.; Nuutila, A.M.; Oksman-Caldentey, K.-M. Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. J. Sci. Food Agric. 2003, 83, 1389–1402. [Google Scholar] [CrossRef]
- Miller, D. Minerals. In Food Chemistry, 3rd ed.; Fennema, O.R., Ed.; Marcel Dekker: New York, NY, USA, 1996. [Google Scholar]
- Loh, S. Bewertung des Einflusses Verschiedener Garverfahren auf die Sensorische und Ernahrungs physiologische Qualita t von Frischen und TK-Gemusen Anhand Ausgewahlter Parameter; Cuvillier: Gottingen, Germany, 2004. [Google Scholar]
Cooking Method | Moisture Content (%) | Total Phenolic Content (mg GAE/100 g) | Total Flavonoid Content (mg/100 g) | Antioxidant Activity (mmol/kg) |
---|---|---|---|---|
Fresh | 90.77 ± 0.54 * c | 583.67 ± 17.25 b | 357.01 ± 14.30 d | 33.69 ± 0.62 a |
Boiling in pressure cooker | 94.18 ± 0.86 ab ** | 390.01 ± 11.89 c | 409.10 ± 30.00 c | 24.51 ± 0.41 c |
Conventional boiling | 94.48 ± 0.21 a | 355.99 ± 12.06 de | 797.10 ± 41.41 a | 29.54 ± 0.47 b |
Conventional heating | 57.22 ± 0.11 d | 273.72 ± 10.93 | 142.02 ± 11.54 e | 8.30 ± 0.13 de |
Microwave heating | 36.54 ± 2.73 e | 731.01 ± 13.02 a | 452.35 ± 15.50 b | 8.87 ± 0.02 d |
Phenolic Compounds (mg/100 g dw) | Fresh | Boiling in Pressure Cooker | Conventional Boiling | Conventional Heating | Microwave Heating |
---|---|---|---|---|---|
Gallic acid | 146.18 ± 11.28 * c | 194.79 ± 11.43 a | 181.57 ± 11.35 b | 24.17 ± 1.17 de | 10.93 ± 0.98 |
3,4-Dihydroxybenzoic acid | 103.43 ± 11.70 b ** | 145.80 ± 12.82 a | 89.65 ± 8.69 c | 17.58 ± 2.39 e | 28.11 ± 1.81 d |
Catechin | 147.52 ± 15.02 c | 482.03 ± 18.03 a | 443.91 ± 17.43 b | 79.75 ± 5.51 e | 94.05 ± 7.57 d |
Caffeic acid | 46.87 ± 3.31 a | 39.30 ± 0.79 b | 36.84 ± 0.34 c | 3.73 ± 0.36 e | 15.05 ± 0.25 d |
Syringic acid | 66.84 ± 2.16 a | 20.56 ± 0.35 c | 20.32 ± 0.22 d | 6.43 ± 0.94 e | 20.75 ± 3.38 b |
Rutin | 148.72 ± 13.62 a | 71.74 ± 2.83 b | 40.86 ± 0.20 c | 19.53 ± 1.05 e | 31.73 ± 2.59 d |
p-Coumaric acid | 12.35 ± 0.25 a | 4.78 ± 0.13 c | 1.52 ± 0.02 e | 2.20 ± 0.34 d | 6.35 ± 0.68 b |
Ferulic acid | 19.85 ± 0.35 a | 5.20 ± 0.07 c | 3.84 ± 0.07 d | 2.20 ± 0.11 e | 7.34 ± 0.74 b |
Resveratrol | 1.27 ± 0.01 d | 3.96 ± 0.05 a | 2.99 ± 0.02 c | 0.96 ± 0.06 e | 3.09 ± 0.22 b |
Quercetin | 6.95 ± 0.17 a | 2.91 ± 0.02 d | 6.48 ± 0.04 b | 0.63 ± 0.07 e | 4.44 ± 0.47 c |
Cinnamic acid | 0.79 ± 0.02 b | 1.73 ± 0.01 a | 0.80 ± 0.01 b | 0.39 ± 0.01 c | 0.07 ± 0.01 d |
Kaempferol | 3.86 ± 0.05 c | 5.04 ± 0.06 b | 7.36 ± 0.15 a | 0.53 ± 0.05 d | 0.41 ± 0.07 e |
Processes | P | K | Ca | Mg | S | Fe | Cu | Mn | Zn | B | Protein |
---|---|---|---|---|---|---|---|---|---|---|---|
Fresh | 1961.87 ± 31.06 * e | 30,296.99 ± 610.77 c | 1664.52 ± 68.48 d | 1018.60 ± 18.56 d | 4081.68 ± 38.34 c | 21.45 ± 0.19 e | 2.40 ± 0.03 cd | 7.58 ± 0.34 c | 11.91 ± 0.10 c | 1.69 ± 0.11 d | 16.11 ± 0.43 e |
Boiling in pressure cooker | 2404.58 ± 90.75 a ** | 23,036.32 ± 1111.70 d | 3000.35 ± 65.50 b | 976.97 ± 25.82 e | 3196.54 ± 141.11 e | 31.15 ± 3.71 c | 2.47 ± 0.50 c | 6.75 ± 0.04 e | 11.10 ± 0.42 e | 2.90 ± 0.02 a | 19.14 ± 0.71 c |
Conventional boiling | 2370.26 ± 103.31 d | 35,130.01 ± 806.24 a | 1603.91 ± 43.20 e | 1181.37 ± 28.88 b | 4603.52 ± 71.97 b | 31.90 ± 0.51 b | 2.68 ± 0.06 b | 8.45 ± 0.35 b | 14.21 ± 0.73 b | 0.89 ± 0.01 e | 18.03 ± 1.64 d |
Conventional heating | 2372.25 ± 87.76 c | 34,131.42 ± 926.33 b | 1746.22 ± 100.70 c | 1223.30 ± 13.58 a | 5105.65 ± 58.77 a | 39.58 ± 1.30 a | 3.17 ± 0.29 a | 8.95 ± 0.37 a | 15.96 ± 0.53 a | 1.71 ± 0.01 c | 19.79 ± 0.36 a |
Microwave heating | 2608.21 ± 99.66 b | 19,647.42 ± 365.89 e | 3380.59 ± 54.27 a | 1054.98 ± 24.30 c | 3299.24 ± 51.78 d | 26.86 ± 0.47 d | 2.68 ± 0.11 b | 7.34 ± 7.34 d | 11.89 ± 0.08 cd | 1.91 ± 0.19 b | 19.30 ± 0.08 b |
PC1 | PC2 | |
---|---|---|
Eigenvalue | 7.542 | 4.665 |
Variability (%) | 50.278 | 31.099 |
Cumulative % | 50.278 | 81.376 |
Correlation | ||
Gallic | 0.913 | −0.375 |
Dihyd | 0.902 | −0.248 |
Catechin | 0.648 | −0.756 |
Caffeic | 0.998 | 0.066 |
Syringic | 0.669 | 0.738 |
Rutin | 0.751 | 0.602 |
Coumaric | 0.432 | 0.868 |
Ferulic | 0.541 | 0.840 |
Resveratrol | 0.323 | −0.593 |
Quercetin | 0.731 | 0.331 |
Cinnamic | 0.683 | −0.466 |
Kaempferol | 0.825 | −0.479 |
TPC | 0.068 | 0.665 |
TFC | 0.520 | −0.412 |
AA | 0.963 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Özcan, M.M.; Uslu, N.; Karrar, E. The Effects of Different Cooking Systems on Changes in the Bioactive Compounds, Polyphenol Profiles, Biogenic Elements, and Protein Contents of Cauliflower Florets. Processes 2024, 12, 2114. https://doi.org/10.3390/pr12102114
Ahmed IAM, Al-Juhaimi FY, Özcan MM, Uslu N, Karrar E. The Effects of Different Cooking Systems on Changes in the Bioactive Compounds, Polyphenol Profiles, Biogenic Elements, and Protein Contents of Cauliflower Florets. Processes. 2024; 12(10):2114. https://doi.org/10.3390/pr12102114
Chicago/Turabian StyleAhmed, Isam A. Mohamed, Fahad Y. Al-Juhaimi, Mehmet Musa Özcan, Nurhan Uslu, and Emad Karrar. 2024. "The Effects of Different Cooking Systems on Changes in the Bioactive Compounds, Polyphenol Profiles, Biogenic Elements, and Protein Contents of Cauliflower Florets" Processes 12, no. 10: 2114. https://doi.org/10.3390/pr12102114
APA StyleAhmed, I. A. M., Al-Juhaimi, F. Y., Özcan, M. M., Uslu, N., & Karrar, E. (2024). The Effects of Different Cooking Systems on Changes in the Bioactive Compounds, Polyphenol Profiles, Biogenic Elements, and Protein Contents of Cauliflower Florets. Processes, 12(10), 2114. https://doi.org/10.3390/pr12102114