Thermal Treatment of Commercial Sweetener Solutions Modulates the Metabolic Responses in C57BL/6 Mice during a 24-Week-Long Exposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Commercial Sweeteners and Preparation of Sweetened Solutions
2.2. Impact of the Thermal Treatment on Sweetener Composition
2.2.1. Caloric Sweeteners
2.2.2. Non-Caloric Sweeteners
2.3. In Vivo Study
2.3.1. Total Energy Intake
2.3.2. Metabolic Parameters
2.3.3. Quantification of Orexigenic and Anorexigenic Peptides
2.3.4. Quantification of Biomarkers of Oxidative Stress
2.4. Statistical Analysis
3. Results
3.1. Effect of the Thermal Treatment on the Composition of Commercial Sweeteners
3.2. Food and Drink Intake, Weight Gain, and Energy Intake
3.3. Blood Biochemical Parameters
3.4. Concentration of Orexigenic and Anorexigenic Peptides
3.5. Quantification of Oxidative Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, K.D. From Dearth to Excess: The Rise of Obesity in an Ultra-Processed Food System. Philos. Trans. R. Soc. B 2023, 378, 20220214. [Google Scholar] [CrossRef]
- Supe, U.R.; Menghani, Y.R.; Trivedi, R.V.; Umekar, M.J. Consumption of Ultra-Processed Foods and Their Link with Increasing Risk of Cancer. GSC Biol. Pharm. Sci. 2022, 20, 006–016. [Google Scholar] [CrossRef]
- Valle, M.; St-Pierre, P.; Pilon, G.; Marette, A. Differential Effects of Chronic Ingestion of Refined Sugars versus Natural Sweeteners on Insulin Resistance and Hepatic Steatosis in a Rat Model of Diet-Induced Obesity. Nutrients 2020, 12, 2292. [Google Scholar] [CrossRef]
- Park, S.; Belfoul, A.M.; Rastelli, M.; Jang, A.; Monnoye, M.; Bae, H.; Kamitakahara, A.; Giavalisco, P.; Sun, S.; Barelle, P.Y.; et al. Maternal Low-Calorie Sweetener Consumption Rewires Hypothalamic Melanocortin Circuits via a Gut Microbial Co-Metabolite Pathway. JCI Insight 2023, 8, e156397. [Google Scholar] [CrossRef]
- Ramos-García, M.; Ble-Castillo, J.L.; García-Vázquez, C.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; Olvera-Hernández, V.; Genis-Mendoza, A.D.; Córdova-Uscanga, R.; Álvarez-González, C.A.; Díaz-Zagoya, J.C. Effects of Non-Nutritive Sweeteners on Energy Intake, Body Weight and Postprandial Glycemia in Healthy and with Altered Glycemic Response Rats. Foods 2021, 10, 958. [Google Scholar] [CrossRef]
- Iizuka, K. Is the Use of Artificial Sweeteners Beneficial for Patients with Diabetes Mellitus? The Advantages and Disadvantages of Artificial Sweeteners. Nutrients 2022, 14, 4446. [Google Scholar] [CrossRef]
- Shi, Q.; Zhu, X.; Deng, S. Sweet Taste Receptor Expression and Its Activation by Sucralose to Regulate Glucose Absorption in Mouse Duodenum. J. Food Sci. 2021, 86, 540–545. [Google Scholar] [CrossRef]
- Pang, M.D.; Goossens, G.H.; Blaak, E.E. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front. Nutr. 2021, 7, 333. [Google Scholar] [CrossRef]
- Deo, P.; Chern, C.; Peake, B.; Tan, S.Y. Non-Nutritive Sweeteners Are in Concomitant with the Formation of Endogenous and Exogenous Advanced Glycation End-Products. Int. J. Food Sci. Nutr. 2020, 71, 706–714. [Google Scholar] [CrossRef]
- Gonçalves Nunes, W.D.; Mannochio Russo, H.; da Silva Bolzani, V.; Caires, F.J. Thermal Characterization and Compounds Identification of Commercial Stevia Rebaudiana Bertoni Sweeteners and Thermal Degradation Products at High Temperatures by TG–DSC, IR and LC–MS/MS. J. Therm. Anal. Calorim. 2021, 146, 1149–1155. [Google Scholar] [CrossRef]
- Eisenreich, A.; Gürtler, R.; Schäfer, B. Heating of Food Containing Sucralose Might Result in the Generation of Potentially Toxic Chlorinated Compounds. Food Chem. 2020, 321, 126700. [Google Scholar] [CrossRef]
- Leitzen, S.; Vogel, M.; Engels, A.; Zapf, T.; Brandl, M. Identification and Quantification of Glucose Degradation Products in Heat-Sterilized Glucose Solutions for Parenteral Use by Thin-Layer Chromatography. PLoS ONE 2021, 16, e0253811. [Google Scholar] [CrossRef]
- Ozgolet, M.; Yaman, M.; Zeki Durak, M.; Karasu, S. The Effect of Five Different Sourdough on the Formation of Glyoxal and Methylglyoxal in Bread and Influence of in Vitro Digestion. Food Chem. 2022, 371, 131141. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999 Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio. Available online: https://cbsuami.org/documentos/labsdivisionales/bioterio/NOM-062-ZOO.pdf (accessed on 8 August 2023).
- Barrios-Correa, A.A.; Estrada, J.A.; Martel, C.; Olivier, M.; Contreras, I. Chronic Intake of Commercial Sweeteners Induces Changes in Feeding Behavior and Signaling Pathways Related to the Control of Appetite in BALB/c Mice. BioMed Res. Int. 2018, 2018, 3628121. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.; Oliver, P.; Palou, A.; Picó, C. The Inhibition of Gastric Ghrelin Production by Food Intake in Rats Is Dependent on the Type of Macronutrient. Endocrinology 2004, 145, 5049–5055. [Google Scholar] [CrossRef] [Green Version]
- Santiago-García, P.A.; López, M.G. Agavins from Agave Angustifolia and Agave Potatorum Affect Food Intake, Body Weight Gain and Satiety-Related Hormones (GLP-1 and Ghrelin) in Mice. Food Funct. 2014, 5, 3311–3319. [Google Scholar] [CrossRef]
- Emilio, L.; Quispe, C. Fisiología del Apetito y el Hambre (Physiology of Appetite and Hunger). Introd. Desarro. Interv. Hipotálamo 2016, 1, 117–124. [Google Scholar]
- Montserrat-de la Paz, S.; Pérez-Pérez, A.; Vilariño-García, T.; Jiménez-Cortegana, C.; Muriana, F.J.G.; Millán-Linares, M.C.; Sánchez-Margalet, V. Nutritional Modulation of Leptin Expression and Leptin Action in Obesity and Ob Esity-Associate d Complications. J. Nutr. Biochem. 2021, 89, 108561. [Google Scholar] [CrossRef]
- Crescenzo, R.; Cigliano, L.; Mazzoli, A.; Cancelliere, R.; Carotenuto, R. Early Effects of a Low Fat, Fructose-Rich Diet on Liver Metabolism, Insulin Signaling, and Oxidative Stress in Young and Adult Rats. Front. Physiol. 2018, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Souza Cruz, E.M.; Bitencourt de Morais, J.M.; Dalto da Rosa, C.V.; da Silva Simões, M.; Comar, J.F.; de Almeida Chuffa, L.G.; Seiva, F.R.F. Long-Term Sucrose Solution Consumption Causes Metabolic Alterations and Affects Hepatic Oxidative Stress in Wistar Rats. Biol. Open 2020, 9, bio047282. [Google Scholar] [CrossRef] [Green Version]
- Agcam, E. A Kinetic Approach to Explain Hydroxymethylfurfural and Furfural Formations Induced by Maillard, Caramelization, and Ascorbic Acid Degradation Reactions in Fruit Juice-Based Mediums. Food Anal. Methods 2022, 15, 1286–1299. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, J.; Chen, K.; Song, L.; Sun, B.; Wei, X. Effects of Saccharin Supplementation on Body Weight, Sweet Receptor MRNA Expression and Appetite Signals Regulation in Post-Weanling Rats. Peptides 2018, 107, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ki, S.Y.; Jeong, Y.T. Taste Receptors beyond Taste Buds. Int. J. Mol. Sci. 2022, 23, 9677. [Google Scholar] [CrossRef]
- Bornemann, V.; Werness, S.C.; Buslinger, L.; Susan, S.; Werness, S.C.; Buslinger, L.; Schiffman, S.S. Intestinal metabolism and bioaccumulation of sucralose in adipose tissue in the rat. J. Toxicol. Environ. Health A 2018, 81, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Menzies, K.J.; Zhang, H.; Katsyuba, E.; Auwerx, J. Protein acetylation in metabolism—Metabolites and cofactors. Nat. Rev. Endocrinol. 2016, 12, 43–60. [Google Scholar] [CrossRef]
- Simoens, C.; Philippaert, K.; Wuyts, C.; Goscinny, S.; Van Hoeck, E.; Van Loco, J.; Billen, J.; de Hoon, J.; Ampe, E.; Vangoitsenhoven, R.; et al. Pharmacokinetics of Oral Rebaudioside A in Patients with Type 2 Diabetes Mellitus and Its Effects on Glucose Homeostasis: A Placebo-Controlled Crossover Trial. Eur. J. Drug Metab. Pharmacokinet. 2022, 47, 827–839. [Google Scholar] [CrossRef]
- Gupta, E.; Purwar, S.; Sundaram, S.; Tripathi, P.; Rai, G. Stevioside and Rebaudioside A—Predominant Ent-Kaurene Diterpene Glycosides of Terapeutic Potential: A Review. Czech J. Food Sci. 2016, 34, 281–299. [Google Scholar] [CrossRef] [Green Version]
- Carvallo, P.; Carvallo, E.; Barbosa-Da-Silva, S.; Mandarim-De-Lacerda, C.A.; Hernández, A.; Del Sol, M. Metabolic Effects of Excessive Fructose Consumption Added. Int. J. Morphol. 2019, 37, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Hannou, S.A.; Mckeown, N.M.; Herman, M.A.; Hannou, S.A.; Haslam, D.E.; Mckeown, N.M.; Herman, M.A. Fructose Metabolism and Metabolic Disease. J. Clin. Investig. 2018, 128, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Freeman, C.R.; Zehra, A.; Ramirez, V.; Wiers, C.E.; Volkow, N.D.; Wang, G.J. Impact of Sugar on the Body, Brain, and Behavior. Front. Biosci. (Landmark Ed.) 2018, 23, 2255–2266. [Google Scholar] [CrossRef]
- Onaolapo, A.Y.; Onaolapo, O.J.; Olowe, O.A. An Overview of Addiction to Sugar. In Dietary Sugar, Salt and Fat in Human Health; Academic Press: Cambridge, MA, USA, 2020; Chapter 9; pp. 195–216. [Google Scholar]
- Gombi-Vaca, M.F.; Sichieri, R.; Verly, E. Caloric Compensation for Sugar-Sweetened Beverages in Meals: A Population-Based Study in Brazil. Appetite 2016, 98, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cui, L.; Wang, H.; Xu, J.; Zhong, Z.; Jia, X.; Wang, J.; Zhang, H. Impact of Dietary Sucralose and Sucrose—Sweetened Water Intake on Lipid and Glucose Metabolism in Male Mice. Eur. J. Nutr. 2023, 62, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Strilbytska, O.; Strutynska, T.; Semaniuk, U.; Burdyliyk, N.; Bubalo, V.; Lushchak, O. Dietary Sucrose Determines Stress Resistance, Oxidative Damages, and Antioxidant Defense System in Drosophila. Scientifica 2022, 2022, 7262342. [Google Scholar] [CrossRef] [PubMed]
Sucrose (ppm) | Glucose (ppm) | Fructose (ppm) | Rebaudioside A (ppm) | Sucralose (ppm) | |
---|---|---|---|---|---|
SC (WT) | 60.42 ± 0.02 a | ||||
SC (TT) | 59.90 ± 0.44 a | ||||
GLU63 (WT) | 3.97 ± 0.05 b | 2.58 ± 0.01 b | |||
GLU63 (TT) | 3.76 ± 0.00 a | 2.44 ±0.02 a | |||
AS (WT) | 5.93 ± 0.30 b | ||||
AS (TT) | 4.78 ± 0.09 a | ||||
STG (WT) | 0.52 ± 0.05 a | ||||
STG (TT) | 0.51 ± 0.03 a | ||||
SUC (WT) | 0.191 ± 0.03 a | ||||
SUC (TT) | 0.188 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Mazzocco, E.; Franco-Robles, E.; Saldaña-Robles, A.; Pacheco, N.; Ozuna, C. Thermal Treatment of Commercial Sweetener Solutions Modulates the Metabolic Responses in C57BL/6 Mice during a 24-Week-Long Exposition. Processes 2023, 11, 2445. https://doi.org/10.3390/pr11082445
Nieto-Mazzocco E, Franco-Robles E, Saldaña-Robles A, Pacheco N, Ozuna C. Thermal Treatment of Commercial Sweetener Solutions Modulates the Metabolic Responses in C57BL/6 Mice during a 24-Week-Long Exposition. Processes. 2023; 11(8):2445. https://doi.org/10.3390/pr11082445
Chicago/Turabian StyleNieto-Mazzocco, Elizabeth, Elena Franco-Robles, Adriana Saldaña-Robles, Neith Pacheco, and César Ozuna. 2023. "Thermal Treatment of Commercial Sweetener Solutions Modulates the Metabolic Responses in C57BL/6 Mice during a 24-Week-Long Exposition" Processes 11, no. 8: 2445. https://doi.org/10.3390/pr11082445