Evaluation of XD 10 Polyamide Electrospun Nanofibers to Improve Mode I Fracture Toughness for Epoxy Adhesive Film Bonded Joints
Abstract
:1. Introduction
2. Materials and Method
2.1. Adherends
2.2. Adhesive
2.3. Nanofibers
2.4. Double Cantilever Beam Fabrication
2.5. DCB Test
3. Results and Discussion
4. Conclusions
- The behaviors of virgin samples are similar, and are not influenced by the number of adhesive layers used for bonding;
- The application of commercial XD10 PA nanofibers (XantuLayr®) at the adhesive/adherent interface improves the mechanical performance of the composite joints, which exhibited higher fracture toughness and fracture resistance than virgin samples. In particular, the 1S-2NF specimens exhibited 10% and 32% higher maximum strength and fracture toughness values, respectively;
- SEM images confirm the contribution of the nanofibers that appear elongated and detached from the matrix. The deformation of the nanomat contributes to the joint toughness;
- The same nanomaterial applied to the center of the adhesive layer does not contribute to the fracture toughness of the joint, as the nanomodified joints show the same GIC and standard deviation values as the virgin samples.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Da Silva, L.F.M.; Öchsner, A.; Adams, R.D. (Eds.) Handbook of Adhesion Technology; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-01168-9. [Google Scholar]
- Kupski, J.; Teixeira de Freitas, S. Design of Adhesively Bonded Lap Joints with Laminated CFRP Adherends: Review, Challenges and New Opportunities for Aerospace Structures. Compos. Struct. 2021, 268, 113923. [Google Scholar] [CrossRef]
- De Oliveira, L.Á.; Vieira, M.M.; dos Santos, J.C.; Freire, R.T.S.; Tonatto, M.L.P.; Panzera, T.H.; Zamani, P.; Scarpa, F. An Investigation on the Mechanical Behaviour of Sandwich Composite Structures with Circular Honeycomb Bamboo Core. Discov. Mech. Eng. 2022, 1, 7. [Google Scholar] [CrossRef]
- Soltannia, B.; Mertiny, P.; Taheri, F. Static and Dynamic Characteristics of Nano-Reinforced 3D-Fiber Metal Laminates Using Non-Destructive Techniques. J. Sandw. Struct. Mater. 2021, 23, 3081–3112. [Google Scholar] [CrossRef]
- Zamani, P.; Jaamialahmadi, A.; da Silva, L.F.M. Fatigue Life Evaluation of Al-GFRP Bonded Lap Joints under Four-Point Bending Using Strain-Life Criteria. Int. J. Adhes. Adhes. 2023, 122, 103338. [Google Scholar] [CrossRef]
- Turan, K.; Örçen, G. Failure Analysis of Adhesive-Patch-Repaired Edge-Notched Composite Plates. J. Adhes. 2017, 93, 328–341. [Google Scholar] [CrossRef]
- Olajide, S.O.; Kandare, E.; Khatibi, A.A. Fatigue Life Uncertainty of Adhesively Bonded Composite Scarf Joints—An Airworthiness Perspective. J. Adhes. 2017, 93, 515–530. [Google Scholar] [CrossRef]
- Rasane, A.R.; Kumar, P.; Khond, M.P. Optimizing the Size of a CFRP Patch to Repair a Crack in a Thin Sheet. J. Adhes. 2017, 93, 1064–1080. [Google Scholar] [CrossRef]
- De Cicco, D.; Taheri, F. Effect of Functionalized Graphene Nanoplatelets on the Delamination-Buckling and Delamination Propagation Resistance of 3D Fiber-Metal Laminates Under Different Loading Rates. Nanomaterials 2019, 9, 1482. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, X.; Zou, L.; Li, X.; Zhao, L.; Zhang, J.; Hu, N. Experimental and Numerical Investigations on the Mode I Delamination Growth Behavior of Laminated Composites with Different Z-Pin Fiber Reinforcements. Compos. Struct. 2022, 287, 115370. [Google Scholar] [CrossRef]
- Neto, J.A.B.P.; Campilho, R.D.S.G.; da Silva, L.F.M. Parametric Study of Adhesive Joints with Composites. Int. J. Adhes. Adhes. 2012, 37, 96–101. [Google Scholar] [CrossRef]
- Dadian, A.; Rahnama, S.; Zolfaghari, A. Experimental Study of the CTBN Effect on Mechanical Properties and Mode I and II Fracture Toughness of a New Epoxy Resin. J. Adhes. Sci. Technol. 2020, 34, 2389–2404. [Google Scholar] [CrossRef]
- Giv, A.N.; Ayatollahi, M.R.; Ghaffari, S.H.; da Silva, L.F.M. Effect of Reinforcements at Different Scales on Mechanical Properties of Epoxy Adhesives and Adhesive Joints: A Review. J. Adhes. 2018, 94, 1082–1121. [Google Scholar] [CrossRef]
- Saraç, İ.; Adin, H.; Temiz, Ş. Experimental Determination of the Static and Fatigue Strength of the Adhesive Joints Bonded by Epoxy Adhesive Including Different Particles. Compos. Part B Eng. 2018, 155, 92–103. [Google Scholar] [CrossRef]
- Banea, M.D.; da Silva, L.F.M.; Carbas, R.J.C.; Campilho, R.D.S.G. Mechanical and Thermal Characterization of a Structural Polyurethane Adhesive Modified with Thermally Expandable Particles. Int. J. Adhes. Adhes. 2014, 54, 191–199. [Google Scholar] [CrossRef]
- Caldona, E.B.; De Leon, A.C.C.; Pajarito, B.B.; Advincula, R.C. A Review on Rubber-Enhanced Polymeric Materials. Polym. Rev. 2017, 57, 311–338. [Google Scholar] [CrossRef]
- Riew, C.K.; Siebert, A.R.; Smith, R.W.; Fernando, M.; Kinloch, A.J. Toughened Epoxy Resins: Preformed Particles as Tougheners for Adhesives and Matrices. In Toughened Plastics II; Advances in Chemistry; Riew, C.K., Kinloch, A.J., Eds.; American Chemical Society: Washington, DC, USA, 1996; Volume 252, pp. 33–44. ISBN 978-0-8412-3151-1. [Google Scholar]
- Williams, R.J.J.; Rozenberg, B.A.; Pascault, J.-P. Reaction-Induced Phase Separation in Modified Thermosetting Polymers. In Polymer Analysis Polymer Physics; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 1997; pp. 95–156. ISBN 978-3-540-68374-2. [Google Scholar]
- Tsang, W.L.; Taylor, A.C. Fracture and Toughening Mechanisms of Silica- and Core–Shell Rubber-Toughened Epoxy at Ambient and Low Temperature. J. Mater. Sci 2019, 54, 13938–13958. [Google Scholar] [CrossRef]
- Wise, C.W.; Cook, W.D.; Goodwin, A.A. CTBN Rubber Phase Precipitation in Model Epoxy Resins. Polymer 2000, 41, 4625–4633. [Google Scholar] [CrossRef]
- Bagheri, R.; Marouf, B.T.; Pearson, R.A. Rubber-Toughened Epoxies: A Critical Review. Polym. Rev. 2009, 49, 201–225. [Google Scholar] [CrossRef]
- Kinloch, A.J. Toughening Epoxy Adhesives to Meet Today’s Challenges. MRS Bull. 2003, 28, 445–448. [Google Scholar] [CrossRef]
- Ghabezi, P.; Farahani, M. Effects of Nanoparticles on Nanocomposites Mode I and II Fracture: A Critical Review. In Progress in Adhesion and Adhesives; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2018; pp. 391–411. ISBN 978-1-119-52644-5. [Google Scholar]
- Ghabezi, P.; Farahani, M. A Cohesive Model with a Multi-Stage Softening Behavior to Predict Fracture in Nano Composite Joints. Eng. Fract. Mech. 2019, 219, 106611. [Google Scholar] [CrossRef]
- Yang, G.; OuYang, Q.; Ye, J.; Liu, L. Improved Tensile and Single-Lap-Shear Mechanical-Electrical Response of Epoxy Composites Reinforced with Gridded Nano-Carbons. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106712. [Google Scholar] [CrossRef]
- NajiMehr, H.; Shariati, M.; Zamani, P.; da Silva, L.F.M.; Ghahremani Moghadam, D. Investigating on the Influence of Multi-Walled Carbon Nanotube and Graphene Nanoplatelet Additives on Residual Strength of Bonded Joints Subjected to Partial Fatigue Loading. J. Appl. Polym. Sci. 2022, 139, 52069. [Google Scholar] [CrossRef]
- Demir, K.; Gavgali, E.; Yetim, A.F.; Akpinar, S. The Effects of Nanostructure Additive on Fracture Strength in Adhesively Bonded Joints Subjected to Fully Reversed Four-Point Bending Fatigue Load. Int. J. Adhes. Adhes. 2021, 110, 102943. [Google Scholar] [CrossRef]
- Zamani, P.; Jaamialahmadi, A.; da Silva, L.F.M. The Influence of GNP and Nano-Silica Additives on Fatigue Life and Crack Initiation Phase of Al-GFRP Bonded Lap Joints Subjected to Four-Point Bending. Compos. Part B Eng. 2021, 207, 108589. [Google Scholar] [CrossRef]
- Takeda, T.; Narita, F. Fracture Behavior and Crack Sensing Capability of Bonded Carbon Fiber Composite Joints with Carbon Nanotube-Based Polymer Adhesive Layer under Mode I Loading. Compos. Sci. Technol. 2017, 146, 26–33. [Google Scholar] [CrossRef]
- Khoramishad, H.; Khakzad, M. Toughening Epoxy Adhesives with Multi-Walled Carbon Nanotubes. J. Adhes. 2018, 94, 15–29. [Google Scholar] [CrossRef]
- Akpinar, I.A.; Gürses, A.; Akpinar, S.; Gültekin, K.; Akbulut, H.; Ozel, A. Investigation of Mechanical and Thermal Properties of Nanostructure-Doped Bulk Nanocomposite Adhesives. J. Adhes. 2018, 94, 847–866. [Google Scholar] [CrossRef]
- Jojibabu, P.; Zhang, Y.X.; Rider, A.N.; Wang, J.; Gangadhara Prusty, B. Synergetic Effects of Carbon Nanotubes and Triblock Copolymer on the Lap Shear Strength of Epoxy Adhesive Joints. Compos. Part B Eng. 2019, 178, 107457. [Google Scholar] [CrossRef]
- Cha, J.; Kim, J.; Ryu, S.; Hong, S.H. Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets. Compos. Part B Eng. 2019, 162, 283–288. [Google Scholar] [CrossRef]
- Xu, L.R.; Li, L.; Lukehart, C.; Kuai, H. Mechanical Characterization of Nanofiber-Reinforced Composite Adhesives. J. Nanosci. Nanotechnol. 2007, 7, 2546–2548. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Farahani, M.; Araei, A. Condition Monitoring of Crack Extension in the Reinforced Adhesive Joint by Carbon Nanotubes. Weld. Technol. Rev. 2020, 91, 7–15. [Google Scholar] [CrossRef]
- Burch, K.; Doshi, S.; Chaudhari, A.; Thostenson, E.; Higginson, J. Estimating Ground Reaction Force with Novel Carbon Nanotube-Based Textile Insole Pressure Sensors. Wearable Technol. 2023, 4, e8. [Google Scholar] [CrossRef] [PubMed]
- Sam-Daliri, O.; Farahani, M.; Faller, L.-M.; Zangl, H. Structural Health Monitoring of Defective Single Lap Adhesive Joints Using Graphene Nanoplatelets. J. Manuf. Process. 2020, 55, 119–130. [Google Scholar] [CrossRef]
- Çakır, M.V.; Özbek, Ö. Mechanical Performance and Damage Analysis of GNP-Reinforced Adhesively Bonded Joints under Shear and Bending Loads. J. Adhes. 2023, 99, 869–892. [Google Scholar] [CrossRef]
- Stetco, C.; Sam-Daliri, O.; Faller, L.-M.; Zangl, H. Piezocapacitive Sensing for Structural Health Monitoring in Adhesive Joints. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019; pp. 1–5. [Google Scholar]
- Radshad, H.; Khoramishad, H.; Nazari, R. The Synergistic Effect of Hybridizing and Aligning Graphene Oxide Nanoplatelets and Multi-Walled Carbon Nanotubes on Mode-I Fracture Behavior of Nanocomposite Adhesive Joints. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 1764–1776. [Google Scholar] [CrossRef]
- Çakır, M.V. The Synergistic Effect of Hybrid Nano-Silica and GNP Additives on the Flexural Strength and Toughening Mechanisms of Adhesively Bonded Joints. Int. J. Adhes. Adhes. 2023, 122, 103333. [Google Scholar] [CrossRef]
- Zamani, P.; FM da Silva, L.; Masoudi Nejad, R.; Ghahremani Moghaddam, D.; Soltannia, B. Experimental Study on Mixing Ratio Effect of Hybrid Graphene Nanoplatelet/Nano-Silica Reinforcement on the Static and Fatigue Life of Aluminum-to-GFRP Bonded Joints under Four-Point Bending. Compos. Struct. 2022, 300, 116108. [Google Scholar] [CrossRef]
- Zamani, P.; Alaei, M.H.; da Silva, L.F.M.; Ghahremani-Moghadam, D. On the Static and Fatigue Life of Nano-Reinforced Al-GFRP Bonded Joints under Different Dispersion Treatments. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 1088–1110. [Google Scholar] [CrossRef]
- Özbek, Ö.; Çakır, M.V. MWCNT and Nano-Silica Hybrids Effect on Mechanical and Fracture Characterization of Single Lap Joints of GFRP Plates. Int. J. Adhes. Adhes. 2022, 117, 103159. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Palazzetti, R.; Zucchelli, A. Electrospun Nanofibers as Reinforcement for Composite Laminates Materials—A Review. Compos. Struct. 2017, 182, 711–727. [Google Scholar] [CrossRef]
- Hamer, S.; Leibovich, H.; Intrater, R.; Zussman, E.; Siegmann, A.; Sherman, D. Mode I Interlaminar Fracture Toughness of Nylon 66 Nanofibrilmat Interleaved Carbon/Epoxy Laminates. Polym. Compos. 2011, 32, 1781–1789. [Google Scholar] [CrossRef]
- Moroni, F.; Palazzetti, R.; Zucchelli, A.; Pirondi, A. A Numerical Investigation on the Interlaminar Strength of Nanomodified Composite Interfaces. Compos. Part B Eng. 2013, 55, 635–641. [Google Scholar] [CrossRef]
- Beckermann, G.W.; Pickering, K.L. Mode I and Mode II Interlaminar Fracture Toughness of Composite Laminates Interleaved with Electrospun Nanofibre Veils. Compos. Part A Appl. Sci. Manuf. 2015, 72, 11–21. [Google Scholar] [CrossRef]
- Saghafi, H.; Palazzetti, R.; Zucchelli, A.; Minak, G. Influence of Electrospun Nanofibers on the Interlaminar Properties of Unidirectional Epoxy Resin/Glass Fiber Composite Laminates. J. Reinf. Plast. Compos. 2015, 34, 907–914. [Google Scholar] [CrossRef]
- Daelemans, L.; van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Using Aligned Nanofibres for Identifying the Toughening Micromechanisms in Nanofibre Interleaved Laminates. Compos. Sci. Technol. 2016, 124, 17–26. [Google Scholar] [CrossRef]
- Daelemans, L.; van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Improved Fatigue Delamination Behaviour of Composite Laminates with Electrospun Thermoplastic Nanofibrous Interleaves Using the Central Cut-Ply Method. Compos. Part A Appl. Sci. Manuf. 2017, 94, 10–20. [Google Scholar] [CrossRef]
- Beckermann, G.W. Nanofiber Interleaving Veils for Improving the Performance of Composite Laminates. Reinf. Plast. 2017, 61, 289–293. [Google Scholar] [CrossRef]
- Goodarz, M.; Bahrami, S.H.; Sadighi, M.; Saber-Samandari, S. Low-Velocity Impact Performance of Nanofiber-Interlayered Aramid/Epoxy Nanocomposites. Compos. Part B Eng. 2019, 173, 106975. [Google Scholar] [CrossRef]
- Oh, H.J.; Kim, H.Y.; Kim, S.S. Effect of the Core/Shell-Structured Meta-Aramid/Epoxy Nanofiber on the Mechanical and Thermal Properties in Epoxy Adhesive Composites by Electrospinning. J. Adhes. 2014, 90, 787–801. [Google Scholar] [CrossRef]
- On, S.Y.; Kim, M.S.; Kim, S.S. Effects of Post-Treatment of Meta-Aramid Nanofiber Mats on the Adhesion Strength of Epoxy Adhesive Joints. Compos. Struct. 2017, 159, 636–645. [Google Scholar] [CrossRef]
- Razavi, S.M.J.; Neisiany, R.E.; Ayatollahi, M.R.; Ramakrishna, S.; Khorasani, S.N.; Berto, F. Fracture Assessment of Polyacrylonitrile Nanofiber-Reinforced Epoxy Adhesive. Theor. Appl. Fract. Mech. 2018, 97, 448–453. [Google Scholar] [CrossRef]
- Ekrem, M.; Avcı, A. Effects of Polyvinyl Alcohol Nanofiber Mats on the Adhesion Strength and Fracture Toughness of Epoxy Adhesive Joints. Compos. Part B Eng. 2018, 138, 256–264. [Google Scholar] [CrossRef]
- Musiari, F.; Pirondi, A.; Moroni, F.; Giuliese, G.; Belcari, J.; Zucchelli, A.; Brugo, T.M.; Minak, G.; Ragazzini, C. Feasibility Study of Adhesive Bonding Reinforcement by Electrospun Nanofibers. Procedia Struct. Integr. 2016, 2, 112–119. [Google Scholar] [CrossRef]
- Musiari, F.; Pirondi, A.; Zucchelli, A.; Menozzi, D.; Belcari, J.; Brugo, T.M.; Zomparelli, L. Experimental Investigation on the Enhancement of Mode I Fracture Toughness of Adhesive Bonded Joints by Electrospun Nanofibers. J. Adhes. 2018, 94, 974–990. [Google Scholar] [CrossRef]
- Brugo, T.; Musiari, F.; Pirondi, A.; Zucchelli, A.; Cocchi, D.; Menozzi, D. Development and Fracture Toughness Characterization of a Nylon Nanomat Epoxy Adhesive Reinforcement. Proc. Inst. Mech. Eng. 2018, 233, 465–474. [Google Scholar] [CrossRef]
- Cocchi, D.; Musiari, F.; Brugo, T.M.; Pirondi, A.; Zucchelli, A.; Campanini, F.; Leoni, E.; Mazzocchetti, L. Characterization of Aluminum Alloy-Epoxy Bonded Joints with Nanofibers Obtained by Electrospinning. J. Adhes. 2020, 96, 384–401. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-08; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2014.
- Han, X.; Jin, Y.; da Silva, L.F.M.; Costa, M.; Wu, C. On the Effect of Adhesive Thickness on Mode I Fracture Energy—An Experimental and Modelling Study Using a Trapezoidal Cohesive Zone Model. J. Adhes. 2020, 96, 490–514. [Google Scholar] [CrossRef]
- Yan, C.C.; Ma, J.L.; Zhang, Y.X.; Wu, C.W.; Yang, P.; Wang, P.; Zhang, W.; Han, X. The Fracture Performance of Adhesively Bonded Orthodontic Brackets: An Experimental-FE Modelling Study. J. Adhes. 2020, 98, 180–206. [Google Scholar] [CrossRef]
- Fernández, M.V.; de Moura, M.F.S.F.; da Silva, L.F.M.; Marques, A.T. Composite Bonded Joints under Mode I Fatigue Loading. Int. J. Adhes. Adhes. 2011, 31, 280–285. [Google Scholar] [CrossRef]
- Gunnion, A.J.; Herszberg, I. Parametric Study of Scarf Joints in Composite Structures. Compos. Struct. 2006, 75, 364–376. [Google Scholar] [CrossRef]
- Xu, Y.; He, Q.; Yang, W.; Sun, T.; Tang, Q. Study on Relationships between Curing Pressures and Mechanical Properties for Epoxy Adhesive Films. Chem. Eng. Trans. 2018, 66, 43–48. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, S.; Li, X. Composite Tapered Scarf Joint Repair: Analytical Model and Experimental Validation; Atlantis Press: Amsterdam, The Netherlands, 2016; pp. 720–726. [Google Scholar]
- Krenk, S. Energy Release Rate of Symmetric Adhesive Joints. Eng. Fract. Mech. 1992, 43, 549–559. [Google Scholar] [CrossRef]
- Minosi, S.; Cocchi, D.; Pirondi, A.; Zucchelli, A.; Campanini, F. Integration of Nylon Electrospun Nanofibers into Structural Epoxy Adhesive Joints. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1038, 012048. [Google Scholar] [CrossRef]
- Minosi, S.; Cocchi, D.; Maccaferri, E.; Pirondi, A.; Zucchelli, A.; Mazzocchetti, L.; Ambrosini, D.; Campanini, F. Exploitation of Rubbery Electrospun Nanofibrous Mat for Fracture Toughness Improvement of Structural Epoxy Adhesive Bonded Joints. J. Adv. Join. Process. 2021, 3, 100050. [Google Scholar] [CrossRef]
Series ID | Adhesive Layer | Number of Samples |
---|---|---|
1S | METLBOND® 1515-4M | 7 |
2S | 2 METLBOND® 1515-4M | 8 |
1S–2NF | XantuLayr® + METLBOND® 1515-4M + XantuLayr® | 8 |
2S–1NF | METLBOND® 1515-4M + XantuLayr® + METLBOND® 1515-4M | 8 |
Sample ID | t (mm) |
---|---|
1S | 0.17 |
2S | 0.48 |
1S–2NF | 0.18 |
2S–1NF | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minosi, S.; Moroni, F.; Pirondi, A. Evaluation of XD 10 Polyamide Electrospun Nanofibers to Improve Mode I Fracture Toughness for Epoxy Adhesive Film Bonded Joints. Processes 2023, 11, 1395. https://doi.org/10.3390/pr11051395
Minosi S, Moroni F, Pirondi A. Evaluation of XD 10 Polyamide Electrospun Nanofibers to Improve Mode I Fracture Toughness for Epoxy Adhesive Film Bonded Joints. Processes. 2023; 11(5):1395. https://doi.org/10.3390/pr11051395
Chicago/Turabian StyleMinosi, Stefania, Fabrizio Moroni, and Alessandro Pirondi. 2023. "Evaluation of XD 10 Polyamide Electrospun Nanofibers to Improve Mode I Fracture Toughness for Epoxy Adhesive Film Bonded Joints" Processes 11, no. 5: 1395. https://doi.org/10.3390/pr11051395
APA StyleMinosi, S., Moroni, F., & Pirondi, A. (2023). Evaluation of XD 10 Polyamide Electrospun Nanofibers to Improve Mode I Fracture Toughness for Epoxy Adhesive Film Bonded Joints. Processes, 11(5), 1395. https://doi.org/10.3390/pr11051395