Development of a Zeolite H-ZSM-5-Based D-μSPE Method for the Determination of Organophosphorus Pesticides in Tea Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Zeolite H-ZSM-5 Adsorbent
2.3. Characterization of Zeolite H-ZSM
2.4. HPLC-MS/MS Analysis
2.5. D-μSPE Process
2.6. Sample Collection
2.7. Validation of D-μSPE
2.8. Regeneration of Zeolite H-ZSM-5
3. Results and Discussion
3.1. Characterization of Prepared Zeolite H-ZSM-5
3.2. Sample Volume
3.3. The Amount of Zeolite H-ZSM-5
3.4. Adsorption Time and Characteristics
3.5. The Solvent and Time of Desorption
3.6. The Validation of D-μSPE Process
3.7. Reusability of Zeolite H-ZSM-5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stote, K.S.; Baer, D.J. Tea consumption may improve biomarkers of insulin sensitivity and risk factors for diabetes. J. Nutr. 2008, 138, 1584s–1588s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, A.; Bansal, A.; Goyal, V.; Bansal, P. A review on tea quality and safety using emerging parameters. Food Measure 2022, 16, 1291–1311. [Google Scholar] [CrossRef]
- Ly, T.-K.; Ho, T.-D.; Behra, P.; Nhu-Trang, T.-T. Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE clean-up method. Food Chem. 2020, 326, 126928. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, D.C.; Qiu, J.W.; Zhang, H.; Zhang, Y.C.; Dong, A.J.; Ma, Y.; Wang, J. Simultaneous determination of 118 pesticide residues in Chinese teas by gas chromatography-mass spectrometry. Chem. Pap. 2009, 63, 39–46. [Google Scholar] [CrossRef]
- Cao, P.; Yang, D.; Zhu, J.; Liu, Z.; Jiang, D.; Xu, H. Estimated assessment of cumulative dietary exposure to organophosphorus residues from tea infusion in China. Environ. Health Prev. Med. 2018, 23, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Shi, T.; Luo, X.; Xiong, H.; Min, F.; Chen, Y.; Nie, S.; Xie, M. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 2019, 275, 255–264. [Google Scholar] [CrossRef]
- Yadav, S.; Rai, S.; Srivastava, A.K.; Panchal, S.; Patel, D.K.; Sharma, V.P.; Jain, S.; Srivastava, L.P. Determination of pesticide and phthalate residues in tea by QuEChERS method and their fate in processing. Environ. Sci. Pollut. Res. Int. 2017, 24, 3074–3083. [Google Scholar] [CrossRef]
- Sun, R.; Yang, W.; Li, Y.; Sun, C. Multi-residue analytical methods for pesticides in teas: A review. Eur. Food Res. Technol. 2021, 247, 1839–1858. [Google Scholar] [CrossRef]
- Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive micro-solid phase extraction. TrAC Trends Anal. Chem. 2019, 112, 226–233. [Google Scholar] [CrossRef]
- Michelangelo, A.; Lehotay, S.J.; Darinka, Š.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and "Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Tuzimski, T.; Rejczak, T.; Pieniążek, D.; Buszewicz, G.; Teresiński, G. Comparison of SPE/d-SPE and QuEChERS-Based Extraction Procedures in Terms of Fungicide Residue Analysis in Wine Samples by HPLC-DAD and LC-QqQ-MS. J. Aoac. Int. 2016, 99, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Jiang, Z.; Wang, S.; Hong, S.; Li, H.; Zhang, C.; Shao, Y.; She, Y.; Jin, F.; Jin, M.; et al. Metal-organic framework UiO-66 for rapid dispersive solid phase extraction of neonicotinoid insecticides in water samples. J. Chromatogr. B 2018, 1077–1078, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kong, C.; Wu, N.; Si, W.; Bai, B. H-beta zeolite-based dispersive solid-phase strategy for the multi-residue determination of pesticides. Anal. Chim. Acta 2022, 1227, 340327. [Google Scholar] [CrossRef] [PubMed]
- Puértolas, B.; López, J.M.; Navarro, M.V.; García, T.; Murillo, R.; Mastral, A.M.; Varela-Gandía, F.J.; Lozano-Castelló, D.; Bueno-López, A.; Cazorla-Amorós, D. Abatement of hydrocarbons by acid ZSM-5 and BETA zeolites under cold-start conditions. Adsorption 2013, 19, 357–365. [Google Scholar] [CrossRef]
- Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal. 2003, 216, 298–312. [Google Scholar] [CrossRef]
- Wang, H.; Xu, R.; Jin, Y.; Zhang, R. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts. Catal. Today 2019, 327, 295–307. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, P.; Yang, C.; Li, C. A Comparative Study of n-Butane Isomerization over H-Beta and H-ZSM-5 Zeolites at Low Temperatures: Effects of Acid Properties and Pore Structures. Catal. Lett. 2019, 149, 1017–1025. [Google Scholar] [CrossRef]
- Kuechl, D.E.; Benin, A.I.; Knight, L.M.; Abrevaya, H.; Wilson, S.T.; Sinkler, W.; Mezza, T.M.; Willis, R.R. Multiple paths to nanocrystalline high silica beta zeolite. Micropor. Mesopor. Mat. 2010, 127, 104–118. [Google Scholar] [CrossRef]
- Wen, Y.; Niu, Z.; Ma, Y.; Ma, J.; Chen, L. Graphene oxide-based microspheres for the dispersive solid-phase extraction of non-steroidal estrogens from water samples. J. Chromatogr. A 2014, 1368, 15–25. [Google Scholar] [CrossRef]
- Si, W.; Wang, S.; Bai, B.; Wu, N.; Ye, T.; Xu, F.; Kong, C. Zeolite H-Beta as a Dispersive Solid-Phase Extraction Sorbent for the Determination of Eight Neonicotinoid Insecticides Using Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry. Appl. Sci. 2022, 12, 4316. [Google Scholar] [CrossRef]
- Guidance SANTE 11312/2021—Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 5 December 2022).
- Si, W.-S.; Wang, S.-Y.; Zhang, Y.-D.; Kong, C.; Bai, B. Pesticides and risk assessment in Shanghai fruit and raw eaten vegetables. Food Addit. Contam. Part B Surveill. 2021, 14, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Y.; Fodjo, E.K.; Kong, C.; Yu, H.-J. Multi-Residue Screening of Pesticides in Aquaculture Waters through Ultra-High-Performance Liquid Chromatography-Q/Orbitrap Mass Spectrometry. Water 2020, 12, 1238. [Google Scholar] [CrossRef]
- Casado, J.; Santillo, D.; Johnston, P. Multi-residue analysis of pesticides in surface water by liquid chromatography quadrupole-Orbitrap high resolution tandem mass spectrometry. Anal. Chim. Acta 2018, 1024, 1–17. [Google Scholar] [CrossRef]
- Arnnok, P.; Patdhanagul, N.; Burakham, R. Dispersive solid-phase extraction using polyaniline-modified zeolite NaY as a new sorbent for multiresidue analysis of pesticides in food and environmental samples. Talanta 2017, 164, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Alhooshani, K. Ultrasound-assisted solvent extraction of organochlorine pesticides from porous membrane packed tea samples followed by GC–MS analysis. Microchem. J. 2020, 152, 104464. [Google Scholar] [CrossRef]
- Liu, C.; Ji, Y.; Jiang, X.; Yuan, X.; Zhang, X.; Zhao, L. The determination of pesticides in tea samples followed by magnetic multiwalled carbon nanotube-based magnetic solid-phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. New J. Chem. 2019, 43, 5395–5403. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, Y.; Marthala, V.R.R.; Bressel, A.; Frey, J.; Hunger, M. Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts. J. Catal. 2009, 263, 277–283. [Google Scholar] [CrossRef]
- Ma, J.; Wu, G.; Li, S.; Tan, W.; Wang, X.; Li, J.; Chen, L. Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination. J. Chromatogr. A 2018, 1553, 57–66. [Google Scholar] [CrossRef]
- Wu, C.C. Multiresidue method for the determination of pesticides in Oolong tea using QuEChERS by gas chromatography-triple quadrupole tandem mass spectrometry. Food Chem. 2017, 229, 580–587. [Google Scholar] [CrossRef]
Title 1 | H-ZSM-5 | H-Beta [13,20] |
---|---|---|
SBET (m2/g) | 364.1 | 600 |
Smic (m2/g) | 330.8 | 530.6 |
Vmic (cm3/g) | 0.15 | 0.21 |
Vt (cm3/g) | 0.25 | 0.36 |
Vmeso (cm3/g) | 0.10 | 0.15 |
Sext (m2/g) | 33.3 | 69.4 |
SiO2/Al2O3 | ~34.6 | ~36.0 |
No. | Compound Name | 0.1 ng·mL−1 | 0.5 ng·mL−1 | 2.5 ng·mL−1 | LOD (ng·mL−1) | LOQ (ng·mL−1) | |||
---|---|---|---|---|---|---|---|---|---|
Average Rec/% | RSD /% | Average Rec/% | RSD /% | Average Rec/% | RSD /% | ||||
1 | bupirimate | 62.1 | 4.1 | 64.4 | 2.5 | 63.6 | 2.6 | 0.05 | 0.1 |
2 | butachlor | 80.0 | 6.8 | 78.7 | 4.4 | 72.0 | 6.2 | 0.05 | 0.1 |
3 | cadusafos | 84.0 | 6.1 | 91.0 | 4.6 | 74.2 | 4.7 | 0.05 | 0.1 |
4 | coumaphos | 78.4 | 4.5 | 78.3 | 3.8 | 76.0 | 3.9 | 0.05 | 0.1 |
5 | demeton | 87.7 | 8.0 | 89.4 | 4.8 | 87.2 | 3.1 | 0.05 | 0.1 |
6 | disulfoton | 81.8 | 10.8 | 80.1 | 9.1 | 79.4 | 12.6 | 0.05 | 0.1 |
7 | disulfoton sulfone | 96.8 | 4.1 | 96.3 | 2.8 | 88.7 | 2.1 | 0.05 | 0.1 |
8 | disulfoton sulfoxide | 78.6 | 3.3 | 81.3 | 1.4 | 74.7 | 2.7 | 0.05 | 0.1 |
9 | ethoprophos | 71.0 | 3.5 | 74.6 | 3.5 | 72.4 | 3.3 | 0.05 | 0.1 |
10 | fensulfothion | 84.8 | 4.3 | 89.1 | 2.6 | 85.5 | 3.2 | 0.05 | 0.1 |
11 | fensulfothion oxon sulfone | 91.6 | 4.1 | 91.0 | 2.1 | 90.0 | 3.1 | 0.05 | 0.1 |
12 | fensulfothion sulfone | 89.9 | 4.1 | 90.7 | 3.7 | 86.6 | 2.6 | 0.05 | 0.1 |
13 | fluopyram | 75.3 | 3.6 | 78.4 | 3.0 | 71.6 | 3.1 | 0.05 | 0.1 |
14 | myclobutanil | 86.2 | 7.0 | 89.6 | 1.7 | 84.7 | 2.5 | 0.05 | 0.1 |
15 | phorate sulfoxide | 80.8 | 2.3 | 84.0 | 2.0 | 78.6 | 2.1 | 0.05 | 0.1 |
16 | prochloraz | - | - | 62.3 | 6.2 | 62.7 | 4.9 | 0.10 | 0.2 |
17 | profenofos | 79.7 | 3.7 | 80.4 | 3.8 | 74.1 | 2.8 | 0.05 | 0.1 |
18 | propiconazole | 106.6 | 5.0 | 89.7 | 3.1 | 79.8 | 3.9 | 0.05 | 0.1 |
19 | pyridaphenthion | 79.3 | 2.2 | 80.2 | 1.7 | 75.7 | 3.1 | 0.05 | 0.1 |
20 | terbufos sulfoxide | 75.0 | 3.8 | 77.2 | 2.4 | 72.8 | 3.7 | 0.05 | 0.1 |
21 | tetraconazole | 71.7 | 5.4 | 73.1 | 3.4 | 69.7 | 3.3 | 0.05 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, B.; Wu, N.; Yang, H.; Liu, H.; Jin, X.; Chen, L.; Huang, Z.; Zhou, C.; Wang, S.; Si, W. Development of a Zeolite H-ZSM-5-Based D-μSPE Method for the Determination of Organophosphorus Pesticides in Tea Beverages. Processes 2023, 11, 1027. https://doi.org/10.3390/pr11041027
Bai B, Wu N, Yang H, Liu H, Jin X, Chen L, Huang Z, Zhou C, Wang S, Si W. Development of a Zeolite H-ZSM-5-Based D-μSPE Method for the Determination of Organophosphorus Pesticides in Tea Beverages. Processes. 2023; 11(4):1027. https://doi.org/10.3390/pr11041027
Chicago/Turabian StyleBai, Bing, Nan Wu, Haifeng Yang, Haiyan Liu, Xiaofen Jin, Lei Chen, Zhiying Huang, Changyan Zhou, Shouying Wang, and Wenshuai Si. 2023. "Development of a Zeolite H-ZSM-5-Based D-μSPE Method for the Determination of Organophosphorus Pesticides in Tea Beverages" Processes 11, no. 4: 1027. https://doi.org/10.3390/pr11041027