An Investigation on Gel-State Electrolytes for Solar Cells Sensitized with β-Substituted Porphyrinic Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrolyte Preparation
2.2. DSSCs Assembly
2.3. Characterizations and Measurements
3. Results and Discussion
3.1. Spectroscopic Features and Energy Levels of Dyes
3.2. Characterization of Gel-Electrolytes
3.3. Photoelectrochemical Investigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sangiorgi, N.; Sangiorgi, A.; Sanson, A. Seawater-Based Electrolytes Facilitate Charge Transfer Mechanisms Improving the Efficiency of Dye-Sensitized Solar Cells. J. Electroanal. Chem. 2022, 915, 116352. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-Sensitized Solar Cells Strike Back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [PubMed]
- Haridas, R.; Velore, J.; Pradhan, S.C.; Vindhyasarumi, A.; Yoosaf, K.; Soman, S.; Unni, K.N.N.; Ajayaghosh, A. Indoor Light-Harvesting Dye-Sensitized Solar Cells Surpassing 30% Efficiency without Co-Sensitizers. Mater. Adv. 2021, 2, 7773–7787. [Google Scholar] [CrossRef]
- Michaels, H.; Benesperi, I.; Freitag, M. Challenges and Prospects of Ambient Hybrid Solar Cell Applications. Chem. Sci. 2021, 12, 5002–5015. [Google Scholar] [CrossRef]
- Wu, C.; Wang, K.; Batmunkh, M.; Bati, A.S.R.; Yang, D.; Jiang, Y.; Hou, Y.; Shapter, J.G.; Priya, S. Multifunctional Nanostructured Materials for next Generation Photovoltaics. Nano Energy 2020, 70, 104480. [Google Scholar] [CrossRef]
- Rondán-Gómez, V.; Montoya De Los Santos, I.; Seuret-Jiménez, D.; Ayala-Mató, F.; Zamudio-Lara, A.; Robles-Bonilla, T.; Courel, M. Recent Advances in Dye-Sensitized Solar Cells. Appl. Phys. A 2019, 125, 1–24. [Google Scholar] [CrossRef]
- Fasolini, A.; Sangiorgi, N.; Tosi Brandi, E.; Sangiorgi, A.; Mariani, F.; Scavetta, E.; Sanson, A.; Basile, F. Increased Efficiency and Stability of Dye-Sensitized Solar Cells (DSSC) Photoanode by Intercalation of Eosin Y into Zn/Al Layered Double Hydroxide. Appl. Clay Sci. 2021, 212, 106219. [Google Scholar] [CrossRef]
- Iftikhar, H.; Sonai, G.G.; Hashmi, S.G.; Nogueira, A.F.; Lund, P.D. Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials 2019, 12, 1998. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, A.A. Physical Properties of Quasi-Solid-State Polymer Electrolytes for Dye-Sensitised Solar Cells: A Characterisation Review. Sol. Energy 2019, 190, 434–452. [Google Scholar] [CrossRef]
- Benesperi, I.; Michaels, H.; Freitag, M. The Researcher’s Guide to Solid-State Dye-Sensitized Solar Cells. J. Mater. Chem. C 2018, 6, 11903–11942. [Google Scholar] [CrossRef] [Green Version]
- Saygili, Y.; Stojanovic, M.; Kim, H.S.; Teuscher, J.; Scopelliti, R.; Freitag, M.; Zakeeruddin, S.M.; Moser, J.E.; Grätzel, M.; Hagfeldt, A. Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups. J. Phys. Chem. C 2020, 124, 7071–7081. [Google Scholar] [CrossRef]
- Sutton, M.; Lei, B.; Michaels, H.; Freitag, M.; Robertson, N. Rapid and Facile Fabrication of Polyiodide Solid-State Dye-Sensitized Solar Cells Using Ambient Air Drying. ACS Appl. Mater. Interfaces 2022, 14, 43456–43462. [Google Scholar] [CrossRef] [PubMed]
- Bella, F.; Mobarak, N.N.; Jumaah, F.N.; Ahmad, A. From Seaweeds to Biopolymeric Electrolytes for Third Generation Solar Cells: An Intriguing Approach. Electrochim. Acta 2015, 151, 306–311. [Google Scholar] [CrossRef]
- Sakali, S.M.; Khanmirzaei, M.H.; Lu, S.C.; Ramesh, S.; Ramesh, K. Investigation on Gel Polymer Electrolyte-Based Dye-Sensitized Solar Cells Using Carbon Nanotube. Ionics 2019, 25, 319–325. [Google Scholar] [CrossRef]
- Pavithra, N.; Velayutham, D.; Sorrentino, A.; Anandan, S. Poly(Ethylene Oxide) Polymer Matrix Coupled with Urea as Gel Electrolyte for Dye Sensitized Solar Cell Applications. Synth. Met. 2017, 226, 62–70. [Google Scholar] [CrossRef]
- Mohan, K.; Bora, A.; Nath, B.C.; Gogoi, P.; Saikia, B.J.; Dolui, S.K. A Highly Stable and Efficient Quasi Solid State Dye Sensitized Solar Cell Based on Polymethyl Methacrylate(PMMA)/Polyaniline Nanotube(PANI-NT) Gel Electrolyte. Electrochim. Acta 2016, 222, 1072–1078. [Google Scholar] [CrossRef]
- Hwang, D.K.; Nam, J.E.; Jo, H.J.; Sung, S.J. Quasi-Solid State Electrolyte for Semi-Transparent Bifacial Dye-Sensitized Solar Cell with over 10% Power Conversion Efficiency. J. Power Source 2017, 361, 87–95. [Google Scholar] [CrossRef]
- Thomas, M.; Rajiv, S. Porous Membrane of Polyindole and Polymeric Ionic Liquid Incorporated PMMA for Efficient Quasi-Solid State Dye Sensitized Solar Cell. J. Photochem. Photobiol. A Chem. 2020, 394, 112464. [Google Scholar] [CrossRef]
- Subramanian, V.; Hari Prasad, K.; Das, H.T.; Ganapathy, K.; Nallani, S.; Maiyalagan, T. Novel Dispersion of 1D Nanofiber Fillers for Fast Ion-Conducting Nanocomposite Polymer Blend Quasi-Solid Electrolytes for Dye-Sensitized Solar Cells. ACS Omega 2022, 7, 1658–1670. [Google Scholar] [CrossRef]
- Liu, I.P.; Cho, Y.S.; Teng, H.; Lee, Y.L. Quasi-Solid-State Dye-Sensitized Indoor Photovoltaics with Efficiencies Exceeding 25%. J. Mater. Chem. A 2020, 8, 22423–22433. [Google Scholar] [CrossRef]
- Wang, X.; Kulkarni, S.A.; Ito, B.I.; Batabyal, S.K.; Nonomura, K.; Wong, C.C.; Grätzel, M.; Mhaisalkar, S.G.; Uchida, S. Nanoclay Gelation Approach toward Improved Dye-Sensitized Solar Cell Efficiencies: An Investigation of Charge Transport and Shift in the TiO2 Conduction Band. ACS Appl. Mater. Interfaces 2013, 5, 444–450. [Google Scholar] [CrossRef] [PubMed]
- González Pedro, V.; Sakurai, H.; Tomita, M.; Ito, B.I.; Fabregat Santiago, F.; Uchida, S.; Segawa, H. Impedance Spectroscopic Analysis of High-Performance Dye Sensitized Solar Cells Based on Nano-Clay Electrolytes. Electrochim. Acta 2016, 197, 77–83. [Google Scholar] [CrossRef]
- Chen, L.H.; Venkatesan, S.; Liu, I.P.; Lee, Y.L. Highly Efficient Dye-Sensitized Solar Cells Based on Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) and Montmorillonite Nanofiller-Based Composite Electrolytes. J. Oleo Sci. 2020, 69, 539–547. [Google Scholar] [CrossRef]
- Higashino, T.; Imahori, H. Porphyrins as Excellent Dyes for Dye-Sensitized Solar Cells: Recent Developments and Insights. Dalton Trans. 2015, 44, 448–463. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Urbani, M.; Gra, M.; Nazeeruddin, M.K.; Grätzel, M.; Nazeeruddin, M.K.; Torres, T. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chem. Rev. 2014, 114, 12330–12396. [Google Scholar] [CrossRef]
- Armel, V.; Pringle, J.M.; Wagner, P.; Forsyth, M.; Officer, D.; MacFarlane, D.R. Porphyrin Dye-Sensitised Solar Cells Utilising a Solid-State Electrolyte. Chem. Commun. 2011, 47, 9327–9329. [Google Scholar] [CrossRef] [PubMed]
- Armel, V.; Pringle, J.M.; Forsyth, M.; MacFarlane, D.R.; Officer, D.L.; Wagner, P. Ionic Liquid Electrolyte Porphyrin Dye Sensitised Solar Cells. Chem. Commun. 2010, 46, 3146–3148. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.M.; Jolley, K.W.; Wagner, P.; Wagner, K.; Walsh, P.J.; Gordon, K.C.; Schmidt-Mende, L.; Nazeeruddin, M.K.; Wang, Q.; Grätzel, M.; et al. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2007, 111, 11760–11762. [Google Scholar] [CrossRef]
- Di Carlo, G.; Orbelli Biroli, A.; Pizzotti, M.; Tessore, F. Efficient Sunlight Harvesting by A4 β-Pyrrolic Substituted ZnII Porphyrins: A Mini-Review. Front. Chem. 2019, 7, 177. [Google Scholar] [CrossRef]
- Covezzi, A.; Orbelli Biroli, A.; Tessore, F.; Forni, A.; Marinotto, D.; Biagini, P.; Di Carlo, G.; Pizzotti, M. 4D–π–1A Type β-Substituted ZnII-Porphyrins: Ideal Green Sensitizers for Building-Integrated Photovoltaics. Chem. Commun. 2016, 52, 12642–12645. [Google Scholar] [CrossRef]
- Orbelli Biroli, A.; Tessore, F.; Vece, V.; Di Carlo, G.; Mussini, P.R.; Trifiletti, V.; de Marco, L.; Giannuzzi, R.; Manca, M.; Pizzotti, M. Highly Improved Performance of ZnII Tetraarylporphyrinates in DSSCs by the Presence of Octyloxy Chains in the Aryl Rings. J. Mater. Chem. A 2015, 3, 2954–2959. [Google Scholar] [CrossRef]
- Magnano, G.; Marinotto, D.; Cipolla, M.P.; Trifiletti, V.; Listorti, A.; Mussini, P.R.; Di Carlo, G.; Tessore, F.; Manca, M.; Orbelli Biroli, A.; et al. Influence of Alkoxy Chain Envelopes on the Interfacial Photoinduced Processes in Tetraarylporphyrin-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2016, 18, 9577–9585. [Google Scholar] [CrossRef] [PubMed]
- Bendoni, R.; Barthélémy, A.L.; Sangiorgi, N.; Sangiorgi, A.; Sanson, A. Dye-Sensitized Solar Cells Based on N719 and Cobalt Gel Electrolyte Obtained through a Room Temperature Process. J. Photochem. Photobiol. A Chem. 2016, 330, 8–14. [Google Scholar] [CrossRef]
- Sangiorgi, A.; Bendoni, R.; Sangiorgi, N.; Sanson, A.; Ballarin, B. Optimized TiO2 Blocking Layer for Dye-Sensitized Solar Cells. Ceram. Int. 2014, 40, 10727–10735. [Google Scholar] [CrossRef]
- Earles, J.C.; Gordon, K.C.; Stephenson, A.W.I.; Partridge, A.C.; Officer, D.L. Spectroscopic and Computational Study of β-Ethynylphenylene Substituted Zinc and Free-Base Porphyrins. Phys. Chem. Chem. Phys. 2011, 13, 1597–1605. [Google Scholar] [CrossRef]
- Bella, F.; Porcarelli, L.; Mantione, D.; Gerbaldi, C.; Barolo, C.; Grätzel, M.; Mecerreyes, D. A Water-Based and Metal-Free Dye Solar Cell Exceeding 7% Efficiency Using a Cationic Poly(3,4-Ethylenedioxythiophene) Derivative. Chem. Sci. 2020, 11, 1485–1493. [Google Scholar] [CrossRef]
- Yee, L.P.; Farhana, N.K.; Omar, F.S.; Sundararajan, V.; Bashir, S.; Saidi, N.M.; Ramesh, S.; Ramesh, K. Enhancing Efficiency of Dye Sensitized Solar Cells Based on Poly(Propylene) Carbonate Polymer Gel Electrolytes Incorporating Double Salts. Ionics 2020, 26, 493–502. [Google Scholar] [CrossRef]
- Ngai, K.S.; Ramesh, S.; Ramesh, K.; Juan, J.C. A Review of Polymer Electrolytes: Fundamental, Approaches and Applications. Ionics 2016, 22, 1259–1279. [Google Scholar] [CrossRef]
- Ding, B.; Jung, Y.; Kim, D.H.; Seong, W.M.; Kim, S.D.; Woo, S.K.; Lee, J.K. Rheological and Electrochemical Properties of Nanoclay Added Electrolyte for Dye Sensitized Solar Cells. Electrochim. Acta 2014, 144, 275–281. [Google Scholar] [CrossRef]
- Bendoni, R.; Sangiorgi, N.; Sangiorgi, A.; Sanson, A. Role of Water in TiO2 Screen-Printing Inks for Dye-Sensitized Solar Cells. Sol. Energy 2015, 122, 497–507. [Google Scholar] [CrossRef]
- Liberatore, M.; Decker, F.; Burtone, L.; Zardetto, V.; Brown, T.M.; Reale, A.; di Carlo, A. Using EIS for Diagnosis of Dye-Sensitized Solar Cells Performance. J. Appl. Electrochem. 2009, 39, 2291–2295. [Google Scholar] [CrossRef]
- Lin, R.Y.-Y.; Wu, F.L.; Chang, C.H.; Chou, H.H.; Chuang, T.M.; Chu, T.C.; Hsu, C.Y.; Chen, P.W.; Ho, K.C.; Lo, Y.H.; et al. Y-Shaped Metal-Free D-π-(A)2 Sensitizers for High-Performance Dye-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 3092–3101. [Google Scholar] [CrossRef]
JSC (mA cm−2) | VOC (mV) | FF (%) | PCE (%) | ||
---|---|---|---|---|---|
PMMA | ZnPC4 | 2.26 ± 0.03 | 616 ± 7 | 62 ± 3 | 0.87 ± 0.05 |
ZnPC12 | 2.68 ± 0.14 | 620 ± 9 | 63 ± 1 | 1.06 ± 0.04 | |
nanoclay | ZnPC4 | 1.19 ± 0.25 | 639 ± 15 | 52 ± 2 | 0.39 ± 0.06 |
ZnPC12 | 3.59 ± 0.45 | 651 ± 11 | 67 ± 2 | 1.55 ± 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangiorgi, N.; Sangiorgi, A.; Sanson, A.; Licchelli, M.; Orbelli Biroli, A. An Investigation on Gel-State Electrolytes for Solar Cells Sensitized with β-Substituted Porphyrinic Dyes. Processes 2023, 11, 463. https://doi.org/10.3390/pr11020463
Sangiorgi N, Sangiorgi A, Sanson A, Licchelli M, Orbelli Biroli A. An Investigation on Gel-State Electrolytes for Solar Cells Sensitized with β-Substituted Porphyrinic Dyes. Processes. 2023; 11(2):463. https://doi.org/10.3390/pr11020463
Chicago/Turabian StyleSangiorgi, Nicola, Alex Sangiorgi, Alessandra Sanson, Maurizio Licchelli, and Alessio Orbelli Biroli. 2023. "An Investigation on Gel-State Electrolytes for Solar Cells Sensitized with β-Substituted Porphyrinic Dyes" Processes 11, no. 2: 463. https://doi.org/10.3390/pr11020463
APA StyleSangiorgi, N., Sangiorgi, A., Sanson, A., Licchelli, M., & Orbelli Biroli, A. (2023). An Investigation on Gel-State Electrolytes for Solar Cells Sensitized with β-Substituted Porphyrinic Dyes. Processes, 11(2), 463. https://doi.org/10.3390/pr11020463