A Review on Solar Chimneys: From Natural Convection Fundamentals to Thermohydraulic Best-Performance Proposals
Abstract
:1. Introduction
1.1. Fundamentals of Natural Convection Flows
1.2. Turbulence and Numerical Simulations
1.3. Boussinesq Approach and Variable Properties
1.4. Research Methodology and Scope
- ⎯
- Reviewing in comprehensive databases, such as scholar.google.com, sciencedirect.com, onlinelibrary.wiley.com, mdpi.com, springer.com, …, among others;
- ⎯
- Searching sufficient general keywords: natural convection, channels, solar chimneys, Trombe walls, buildings, ventilation;
- ⎯
- Selecting relevant published works. It has been preferred that the number of references not be too high, with the aim of conducting appropriate critical comments for most contributions;
- ⎯
- Focusing on solar chimneys in buildings, including Trombe walls;
- ⎯
- Focusing on certain aspects of the numerical simulations carried out, such as the use of turbulence models or the simulation of atmospheric wind, among others.
2. Basis: Vertical Channels
2.1. Fundamentals on Natural Convection in Vertical Channels
2.2. The Optimization Problem
3. Vertical Channels with Extensions
3.1. Aditional Spaces in Vertical Channels Systems
3.2. Note on Optimization Procedures
4. Geometries Approximating Passive Solar Devices
4.1. Some Topics on Studied Morphologies
4.2. Reference Studies on Passive Solar Systems
4.2.1. General Approach of Reference Studies
4.2.2. Pioneering Works on Solar Passive Systems
5. Overview of Relevant Literature
6. Solar Chimneys: Topics
6.1. Prevailing Buoyancy
6.2. Taking into Account Radiative Effects
6.3. Wind-Driving Effects
6.4. Fundamentals of Wind Numerical Simulation
7. Solar Chimneys: Shapes and Designs
7.1. Shapes and Designs. Background
7.2. Tilt-Related Studies
7.3. Width-Related Studies
7.4. Inlet/Outlet-Related Studies
8. Solar Chimneys: Plates, Fins, and Flow Disturbers
8.1. Intermediate Plates
8.2. Fins
8.3. Obstacles and Vortex Generators
9. Short Note on the Influence of Climatic Conditions
10. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Bejan, A. Convection Heat Transfer; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Incropera, F.P.; De Witt, D.P. Introduction to Heat Transfer; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Bejan, A. Heat Transfer; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Turner, J.S. Buoyancy Effects in Fluids; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Yuan, X.; Moser, A.; Suter, P. Wall functions for numerical simulation of turbulent natural convection along vertical plates. Int. J. Heat Mass Transf. 1993, 36, 4477–4485. [Google Scholar] [CrossRef]
- Versteegh, T.A.; Nieuwstadt, F.T. A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions. Int. J. Heat Mass Transf. 1999, 42, 3673–3693. [Google Scholar] [CrossRef]
- Henkes, R.A.W.M.; Hoogendorn, C.J. Comparison exercise for computations of turbulent natural convection in enclosures. Numer. Heat Transf. 1995, 28, 59–78. [Google Scholar] [CrossRef]
- Fedorov, A.G.; Viskanta, R. Turbulent natural convection heat transfer in an asymmetrically heated, vertical parallel-plate channel. Int. J. Heat Mass Transf. 1997, 40, 3849–3860. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries: La Cañada, CA, USA, 2006. [Google Scholar]
- Peng, S.; Davison, L. Computation of turbulent buoyant flows in enclosures with low-Reynolds number k–ω models. Int. J. Heat Fluid Flow 1999, 20, 172–184. [Google Scholar] [CrossRef]
- Xu, W.; Chen, Q.; Nieuwstadt, F.T.M. A new turbulence model for near wall natural convection. Int. J. Heat Mass Transf. 1998, 41, 3161–3176. [Google Scholar] [CrossRef]
- Ciofalo, M. Large-eddy simulations of turbulent flow with heat transfer in simple and complex geometries using Harwell-FLOW3D. Appl. Math. Model. 1996, 20, 262–271. [Google Scholar] [CrossRef]
- Salinas-Vázquez, M.; Vicente, W.; Martínez, E.; Barrios, E. Large eddy simulation of a confined square cavity with natural convection based on compressible flow equations. Int. J. Heat Fluid Flow 2011, 32, 876–878. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, R.; Staroselsky, I.; Chen, H. Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice-Boltzmann based-algorithm. Int. J. Heat Mass Transf. 2004, 47, 4869–4879. [Google Scholar] [CrossRef]
- Nokhosteen, A.; Sobhansarbandi, S. Utilizing lattice Boltzmann method for heat transfer analysis in solar thermal systems. Sustain. Energy Technol. Assess. 2021, 46, 101264. [Google Scholar] [CrossRef]
- Gray, D.D.; Giorgini, A. The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 1976, 19, 545–551. [Google Scholar] [CrossRef]
- Zhong, Z.Y.; Yang, K.T.; Lloyd, J.R. Variable property effects in laminar natural convection in a square enclosure. ASME J. Heat Transf. 1985, 107, 133–138. [Google Scholar] [CrossRef]
- Emery, A.F.; Lee, J.W. The effects of property variations on natural convection in a square enclosure. ASME J. Heat Transf. 1999, 121, 57–62. [Google Scholar] [CrossRef]
- Chenoweth, D.R.; Paolucci, S. Natural convection in an enclosed vertical air layer with large horizontal temperature differences. J. Fluid Mech. 1986, 169, 173–210. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Wu, X.B. Thermal drag and critical heat flux for natural convection of air in vertical parallel plates. ASME J. Heat Transf. 1993, 115, 124–129. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Song, Y.Z.; Li, Z.X. Laser speckle photography in heat transfer studies. Exp. Thermal Fluid Sci. 1995, 10, 1–16. [Google Scholar] [CrossRef]
- Elenbaas, W. Heat dissipation of parallel plates by free convection. Physica 1942, 9, 1–8. [Google Scholar] [CrossRef]
- Aihara, T. Effects of inlet boundary conditions on numerical solutions of free convection between vertical parallel plates. Rep. Inst. High Speed Mech. 1973, 28, 258. [Google Scholar]
- Kettleborough, C.F. Transient laminar free convection between heated vertical plates including entrance effects. Int. J. Heat Mass Transf. 1972, 15, 883–896. [Google Scholar] [CrossRef]
- Nakamura, H.; Yutaka, A.; Naitou, T. Heat transfer by free convection between two parallel flat plates. Numer. Heat Transf. 1982, 5, 95–106. [Google Scholar] [CrossRef]
- Desrayaud, G.; Chénier, E.; Joulin, A.; Bastide, A.; Brangeon, B.; Caltagirone, J.P.; Cherif, Y.; Eymard, R.; Garnier, C.; Giroux-Julien, S.; et al. Benchmark solutions for natural convection flows in vertical channels submitted to different open boundary conditions. Int. J. Therm. Sci. 2013, 72, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.C.; Chu, S.H. Revisit on natural convection from vertical isothermal plate arrays-effects of extra plume buoyancy. Int. J. Therm. Sci. 2017, 120, 263–272. [Google Scholar] [CrossRef]
- Bodoia, J.R.; Osterle, J.F. The development of free convection between heated vertical plates. ASME J. Heat Transf. 1962, 84, 40–44. [Google Scholar] [CrossRef]
- Bar-Cohen, A.; Rohsenow, W.M. Thermally optimum spacing of vertical, natural convection cooled, parallel plates. ASME J. Heat Transf. 1984, 106, 116–123. [Google Scholar] [CrossRef]
- Anand, N.K.; Kim, S.H.; Fletcher, L.S. The effect of plate spacing on free convection between heated parallel plates. ASME J. Heat Transf. 1992, 114, 515–518. [Google Scholar] [CrossRef]
- Zamora, B.; Hernández, J. Influence of upstream conduction on the thermally optimum spacing of isothermal, natural convection-cooled vertical plate arrays. Int. Commun. Heat Mass Transf. 2001, 28, 201–210. [Google Scholar] [CrossRef]
- Zamora, B. Thermally optimum spacing between inner plates in natural convection flows in cavities by numerical investigation. Processes 2020, 8, 554. [Google Scholar] [CrossRef]
- Haaland, S.E.; Sparrow, E.M. Solutions for the channel plume and the parallel-walled chimney. Num. Heat Transf. 1983, 6, 155–172. [Google Scholar] [CrossRef]
- Straatman, A.G.; Tarasuk, J.D.; Floryan, J.M. Heat transfer enhancement from a vertical, isothermal channel generated by the chimney effect. ASME J. Heat Transf. 1993, 115, 395–402. [Google Scholar] [CrossRef]
- Morrone, B.; Campo, A.; Manca, O. Optimum plate separation in vertical parallel-plate channels for natural convective flows: Incorporation of large spaces at the channel extremes. Int. J. Heat Mass Transf. 1997, 40, 993–1000. [Google Scholar] [CrossRef]
- Ledezma, G.A.; Bejan, A. Optimal geometric arrangement of staggered vertical plates in natural convection. ASME J. Heat Transf. 1997, 119, 700–708. [Google Scholar] [CrossRef]
- Viswatmula, P.; Ruhul Amin, M. Effects of multiple obstructions on natural convection heat transfer in vertical channels. Int. J. Heat Mass Transf. 1995, 38, 2039–2046. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D. Optimum geometric arrangement of vertical rectangular fin arrays. Energy Convers Manag. 2010, 51, 2449–2456. [Google Scholar] [CrossRef]
- Ben Maad, R.; Belghith, A. The use of grid-generated turbulence to improve heat transfer in passive solar systems. Renew. Energy 1992, 2, 333–336. [Google Scholar] [CrossRef]
- Bejan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bejan, A.; Lorente, S. The constructal law and the thermodynamics of flow system with configuration. Int. J. Heat Mass Transf. 2004, 47, 3203–3214. [Google Scholar] [CrossRef]
- Da Silva, A.L.; Lorenzini, G.; Bejan, A. Distribution of heat sources in vertical channels with natural convection. Int. J. Heat Mass Transf. 2005, 48, 1462–1469. [Google Scholar] [CrossRef]
- Da Silva, A.K.; Gosselin, L. Optimal geometry of L and C-shaped channels for maximum heat transfer rate in natural convection. Int. J. Heat Mass Transf. 2005, 48, 609–620. [Google Scholar] [CrossRef]
- Zamora, B.; Kaiser, A.S. Optimum wall-to-wall spacing in solar chimney shaped channels in natural convection by numerical investigation. Appl. Therm. Eng. 2009, 29, 762–769. [Google Scholar] [CrossRef]
- Zamora, B.; Kaiser, A.S. Thermal and dynamic optimization of the convective flow in Trombe Wall shaped channels by numerical investigation. Heat Mass Transf. 2009, 45, 1393–1407. [Google Scholar] [CrossRef]
- Aounallah, M.; Belkadi, M.; Adjlout, L.; Imine, O. Numerical shape optimization of a confined cavity in natural convection regime. Comput. Fluids 2013, 75, 11–21. [Google Scholar] [CrossRef]
- Biserni, C.; Rocha, L.A.O.; Stanescu, G.; Lorenzini, E. Constructal H-shaped cavities according to Bejan’s theory. Int. J. Heat Mass Transf. 2007, 50, 2132–2138. [Google Scholar] [CrossRef]
- Lorenzini, G.; Biserni, C.; García, F.L.; Rocha, L.A.O. Geometric optimization of a convective T-shaped cavity on the basis of constructal theory. Int. J. Heat Mass Transf. 2012, 55, 6951–6958. [Google Scholar] [CrossRef]
- Lorenzini, G.; Rocha, L.A.O. Geometric optimization of T-Y-shaped cavity according to Constructal design. Int. J. Heat Mass Transf. 2009, 52, 4683–4688. [Google Scholar] [CrossRef]
- Linden, P.F. The fluid mechanics of natural ventilation. Ann. Rev. Fluid Mech. 1999, 31, 201–238. [Google Scholar] [CrossRef] [Green Version]
- Borgers, T.R.; Akbari, H. Free convective turbulent flow within the Trombe wall channel. Sol. Energy 1984, 33, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Smolec, W.; Thomas, A. Problems encountered in heat transfer studies of a Trombe wall. Energy Convers Manag. 1994, 35, 483–491. [Google Scholar] [CrossRef]
- Smolec, W.; Thomas, A. Theoretical and experimental investigations of heat transfer in a Trombe wall. Energy Convers Manag. 1994, 34, 385–400. [Google Scholar] [CrossRef]
- Jubran, B.A.; Hamdan, M.A.; Manfalouti, W. Modelling free convection in a Trombe wall. Renew. Energy 1991, 1, 351–360. [Google Scholar] [CrossRef]
- Gan, G.; Riffat, S.B. A numerical study of solar chimney for natural ventilation of buildings with heat recovery. Appl. Therm. Eng. 1998, 18, 117–187. [Google Scholar] [CrossRef]
- Gan, G. A parametric study of Trombe walls for passive cooling of buildings. Energy Build. 1998, 27, 37–43. [Google Scholar] [CrossRef]
- Awbi, H.B. Design considerations for naturally ventilated buildings. Renew. Energy 1994, 5, 1081–1090. [Google Scholar] [CrossRef]
- Ong, K.S. A mathematical model of a solar chimney. Renew. Energy 2003, 28, 1047–1060. [Google Scholar] [CrossRef]
- Ong, K.S.; Chow, C.C. Performance of a solar chimney. Solar Energy 2003, 17, 1–17. [Google Scholar] [CrossRef]
- Bouchair, A. Solar chimney for promoting cooling ventilation in southern Algeria. Build. Serv. Eng. Res. Technol. 1994, 15, 81–93. [Google Scholar] [CrossRef]
- Warringon, R.O.; Ameel, T.A. Experimental studies of natural convection in partitioned enclosures with a Trombe wall geometry. ASME J. Solar Energy Eng. 1995, 117, 16–21. [Google Scholar] [CrossRef]
- Afonso, A.; Oliveira, A. Solar chimneys: Simulation and experiment. Energy Build. 2000, 32, 71–79. [Google Scholar] [CrossRef]
- Onbasioglu, H.; Egrican, A.N. Experimental approach to the thermal response of passive systems. Energy Convers. Manag. 2002, 43, 2053–2065. [Google Scholar] [CrossRef]
- Stevanović, S. Optimization of passive solar design strategies: A review. Renew. Sustain. Energy Rev. 2013, 25, 177–196. [Google Scholar] [CrossRef]
- Zhang, T.; Tan, Y.; Yang, H.; Zhang, X. The application of air layers in building envelopes: A review. Appl. Energy 2016, 165, 707–734. [Google Scholar] [CrossRef]
- Omrany, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Raahemifar, K.; Tookey, J. Application of passive solar systems for improving the energy efficiency in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 62, 1252–1269. [Google Scholar] [CrossRef]
- Zhai, X.Q.; Song, Z.P.; Wang, R.Z. A review for the applications of solar chimneys in buildings. Renew. Sustain. Energy Rev. 2011, 15, 3757–3767. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, G.; Yang, W.; Huang, D.; Cheng, X.; Setunge, S. Determining the influencing factors on the performance of solar chimney in building. Renew. Sustain. Energy Rev. 2018, 88, 223–238. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Y.; Shi, L. Solar chimney applications in buildings. Encyclopedia 2021, 1, 409–422. [Google Scholar] [CrossRef]
- Ding, W.; Hasemi, Y.; Yamada, T. Natural ventilation performance of a double-skin façade with a solar chimney. Energy Build. 2005, 37, 411–418. [Google Scholar] [CrossRef]
- Mathur, J.; Bansal, N.K.; Mathur, S.; Jain, M.; Anupma. Experimental investigation on solar chimney for room ventilation. Sol. Energy 2006, 80, 927–935. [Google Scholar] [CrossRef]
- Mathur, J.; Mathur, S.; Anupma. Summer-performance of inclined roof solar chimney for natural convection. Energy Build. 2006, 38, 1156–1163. [Google Scholar] [CrossRef]
- Burek, S.A.M.; Habeb, A. Air flow and thermal efficiency characteristics in solar chimney and Trombe walls. Energy Build. 2007, 39, 128–135. [Google Scholar] [CrossRef]
- Arce, J.; Jiménez, M.J.; Guzmán, J.D.; Heras, M.R.; Álvarez, G.; Xamán, J. Experimental study for natural ventilation on a solar chimney. Renew. Energy 2009, 34, 2928–2934. [Google Scholar] [CrossRef]
- Bacharoudis, E.; Vrachopoulos, M.G.; Koukou, M.K.; Margaris, D.; Filios, A.E.; Mavrommatis, S.A. Study of the natural convection phenomena inside a solar chimney with one wall adiabatic and one wall under heat flux. Appl. Therm. Eng. 2007, 27, 2266–2275. [Google Scholar] [CrossRef] [Green Version]
- Harris, D.J.; Helwing, N. Solar chimney and building ventilation. Appl. Energy 2007, 84, 135–146. [Google Scholar] [CrossRef]
- Bassiouny, R.; Koura, N.S.A. An analytical and numerical study of solar chimney use for room natural ventilation. Energy Build. 2008, 40, 865–873. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Y.; Nguyen, K.; Han, F.; Li, J.; Shi, L. A wall solar chimney to ventilate multi-zone buildings. Sustain. Energy Technol. Assess. 2021, 47, 101381. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, G. An empirical model to predict the performance of typical solar chimneys considering both room and cavity configurations. Build. Environ. 2016, 103, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Xamán, C.; Xamán, J.; Gijón-Rivera, M.; Zavala-Guillén, I.; Noh-Pat, F.; Simá, E. Assessing the thermal performance of a rooftop solar chimney attached to a single room. J. Build. Eng. 2020, 31, 101380. [Google Scholar] [CrossRef]
- Vázquez-Ruíz, A.; Navarro, J.M.A.; Hinojosa, J.F.; Xamán, J.P. Effect of the solar chimney position on heat transfer in a room. Int. J. Mech. Sci. 2021, 209, 106700. [Google Scholar] [CrossRef]
- Lee, K.H.; Strand, R.K. Enhancement of natural ventilation in buildings using a thermal chimney. Energy Build. 2009, 41, 615–621. [Google Scholar] [CrossRef]
- Singh, A.P.; Akshayveer; Kumar, A.; Singh, O.P. Designs for high flow natural convection solar air heaters. Sol. Energy 2019, 193, 724–737. [Google Scholar] [CrossRef]
- Singh, A.P.; Akshayveer; Kumar, A.; Singh, O.P. Natural convection solar air heater: Bell-mounted integrated converging channel for high flow applications. Build. Environ. 2021, 187, 107367. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, J.; Sun, S.; Chen, Z. Numerical simulation and sensitivity analysis on an improved Trombe wall. Sustain. Energy Technol. Assess. 2021, 43, 100941. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.; Yu, B.; Zhang, M.; Tan, Q.; Wang, Y.; Zhang, Y. Contrastive analysis on the ventilation performance of a combined solar chimney. Appl. Sci. 2022, 12, 156. [Google Scholar] [CrossRef]
- Nguyen, A.Q.; Nguyen, V.T.; Tran, L.T.; Wells, J.C. CFD analysis of different ventilation strategies for a room with a heated wall. Buildings 2022, 12, 1300. [Google Scholar] [CrossRef]
- Nouanégué, H.F.; Bilgen, E. Heat transfer by convection, conduction and radiation in solar chimney systems for ventilation of dwellings. Int. J. Heat Fluid Flow 2009, 30, 150–157. [Google Scholar] [CrossRef]
- Montiel, M.; Hinojosa, J.; Estrada, C.A. Numerical study of heat transfer by natural convection and surface thermal radiation in an open cavity receiver. Sol. Energy 2012, 86, 1118–1128. [Google Scholar] [CrossRef]
- Zamora, B.; Kaiser, A.S. Radiative and variable thermophysical properties effects on turbulent convective flows in cavities with thermal passive configuration. Int. J. Heat Mass Transf. 2017, 109, 981–996. [Google Scholar] [CrossRef]
- Bansal, N.K.; Mathur, R.; Bhandari, M.S. A study of solar chimney assisted wind tower system for natural ventilation in buildings. Build. Environ. 1994, 29, 495–500. [Google Scholar] [CrossRef]
- Nouanégué, H.F.; Alandji, L.R.; Bilgen, E. Numerical study of solar-wind tower systems for ventilation of dwellings. Renew. Energy 2008, 33, 434–443. [Google Scholar] [CrossRef]
- Zamora, B.; Kaiser, A.S. Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation. Renew. Energy 2010, 35, 2080–2088. [Google Scholar] [CrossRef]
- Neves, L.O.; Da Silva, F.M. Simulation and measurements of wind interference on a solar chimney performance. J. Wind Eng. Ind. Aerodyn. 2018, 179, 135–145. [Google Scholar] [CrossRef]
- Shi, L. Impacts of wind on solar chimney performance in a building. Energy 2019, 185, 55–67. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, G.; Li, W.; Shi, L. External wind on the optimum parameters of a wall solar chimney in building. Sustain. Energy Technol. Assess. 2020, 42, 100842. [Google Scholar] [CrossRef]
- Moosavi, L.; Zandi, M.; Bidi, M.; Behroozizade, E.; Kazemi, I. New design for solar chimney with integrated windcatcher for space cooling and ventilation. Build. Environ. 2020, 181, 106785. [Google Scholar] [CrossRef]
- Jomehzadeh, F.; Hussen, H.M.; Calaudit, J.K.; Nejat, P.; Ferwati, M.S. Natural ventilation by windcatcher (Bagdir): A review on the impacts of geometry, microclimate and macroclimate. Energy Build. 2020, 226, 110396. [Google Scholar] [CrossRef]
- Evola, G.; Popov, V. Computational analysis of wind driven natural ventilation in buildings. Energy Build. 2006, 38, 491–501. [Google Scholar] [CrossRef]
- Pakari, A.; Ghani, S. Aiflow assessment in a naturally ventilated greenhouse equipped with wind towers: Numerical simulation and wind tunnel experiments. Energy Build. 2019, 199, 1–11. [Google Scholar] [CrossRef]
- Ramponi, R.; Blocken, B. CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Build. Environ. 2012, 53, 34–48. [Google Scholar] [CrossRef]
- Park, J.; Sun, X.; Choi, J.-I.; Rhee, G.H. Effect of wind and buoyancy interaction on single-sided ventilation in a building. J. Wind Eng. Ind. Aerodyn. 2017, 171, 380–389. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Blocken, B.; Van der Hout, A.; Dekker, J.; Weiler, O. CFD simulation of wind flow over natural complex terrain: Case study with validation by field measurements for Ria de Ferrol, Galicia, Spain. J. Wind Eng. Ind. Aerodyn. 2015, 147, 43–57. [Google Scholar] [CrossRef]
- Richards, P.J.; Hoxey, R.P. Appropriate boundary conditions for computational wind engineering models using the k–ω turbulence model. J. Wind Eng. Ind. Aerodyn. 1993, 46–47, 145–153. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J. CFD simulations of the atmospheric boundary layer: Wall function problems. Atmos. Environ. 2007, 41, 238–252. [Google Scholar] [CrossRef]
- Richards, P.J.; Norris, S.E. Appropriate boundary conditions for computational wind engineering models revised. J. Wind Eng. Ind. Aerodyn. 2011, 99, 257–266. [Google Scholar] [CrossRef]
- Van Hoof, T.; Blocken, B.; Tominaga, Y. On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments. Build. Environ. 2017, 114, 148–165. [Google Scholar] [CrossRef]
- Palyvos, J.A. A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Appl. Therm. Eng. 2008, 28, 801–808. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, D.; Tam, V.W.Y.; Tao, Y.; Zhang, G.; Setunge, S.; Shi, L. A critical review of combined natural ventilation techniques in sustainable buildings. Renew. Sustain. Energy Rev. 2021, 141, 110795. [Google Scholar] [CrossRef]
- Shaeri, J.; Mahdavinejad, M. A new design to create natural ventilation in buildings: Wind chimney. J. Build. Eng. 2022, 59, 105041. [Google Scholar] [CrossRef]
- Sakonidou, E.P.; Karapantsios, T.D.; Balouktis, A.I.; Chassapis, D. Modeling of the optimum tilt of a solar chimney for maximum air flow. Sol. Energy 2008, 82, 80–94. [Google Scholar] [CrossRef]
- Prasad, M.; Chandra, K.S. Optimum tilt of solar collector for maximum natural flow. Energy Convers. Manag. 1990, 30, 369–379. [Google Scholar] [CrossRef]
- Bassiouny, R.; Korah, N.S.A. Effect of solar chimney inclination angle on space flow pattern and ventilation rate. Energy Build. 2009, 41, 190–196. [Google Scholar] [CrossRef]
- Khanal, R.; Lei, C. Flow reversal effects on buoyancy induced air flow in a solar chimney. Sol. Energy 2012, 86, 2783–2794. [Google Scholar] [CrossRef]
- Khanal, R.; Lei, C. An experimental investigation of an inclined passive wall solar chimney for natural ventilation. Sol. Energy 2014, 107, 461–474. [Google Scholar] [CrossRef]
- Ren, X.H.; Wang, L.; Liu, R.Z.; Wang, L.; Zhao, F.Y. Thermal stack airflows inside the solar chimney with discrete heat sources: Reversal flow regime defined by chimney inclination and thermal Rayleigh number. Renew. Energy 2021, 163, 342–356. [Google Scholar] [CrossRef]
- Kong, J.; Niu, J.; Lei, C. A CFD based approach for determining the optimum inclination angle of a roof-top solar chimney for building ventilation. Sol. Energy 2020, 198, 555–569. [Google Scholar] [CrossRef]
- Zavala-Guillén, I.; Xamán, J.; Hernández-Pérez, I.; Hernández-López, I.; Gijón-Rivera, M.; Chávez, Y. Numerical study of the optimum width of 2a diurnal double air-channel solar chimney. Energy 2018, 47, 403–417. [Google Scholar] [CrossRef]
- Zamora, B. Morphological comparative assessment of a rooftop solar chimney through numerical modeling. Int. J. Mech Sci. 2022, 227, 107441. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Sreejaya, K.V.; Ul-Haq Gilani, S.I. Mathematical analysis of the influence of the chimney height and collector area on the performance of a roof top solar chimney. Energy Build. 2014, 68, 305–311. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Sreejaya, K.V.; Chikere, A.O. Experimental and numerical analysis of the influence of inlet configuration on the performance of a roof top solar chimney. Energy Build. 2018, 159, 89–98. [Google Scholar] [CrossRef]
- He, G. A general model for predicting the airflow rates of a vertically installed solar chimney with connecting ducts. Energy Build. 2020, 229, 110481. [Google Scholar] [CrossRef]
- He, G.; Zhang, J.; Hong, S. A new analytical model for airflow in solar chimneys based on thermal boundary layers. Sol. Energy 2016, 136, 614–621. [Google Scholar] [CrossRef]
- Nguyen, Y.Q.; Wells, J.C. Effects of wall proximity on the airflow in a vertical solar chimney for natural ventilation of dwellings. J. Build. Phys. 2020, 44, 225–250. [Google Scholar] [CrossRef]
- Nguyen, Y.Q.; Nguyen, V.T. Characterizing the induced flow through the cavity of a wall solar chimney under the effects of the opening heights. J. Build. Phys. 2022. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, W.; Chen, Y.; Song, J. Structural and heat transfer model analysis of wall-mounted solar chimney inlets and outlets in single-story buildings. Buildings 2022, 12, 1790. [Google Scholar] [CrossRef]
- Gao, N.; Yan, Y.; Sun, R.; Lei, Y. Natural ventilation enhancement of a roof solar chimney with wind-induced channel. Energies 2022, 15, 6492. [Google Scholar] [CrossRef]
- Ren, X.H.; Liu, R.Z.; Wang, Y.H.; Wang, L.; Zhao, F.Y. Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: Reversal and cooperative flow dynamics. Renew. Energy 2019, 138, 354–367. [Google Scholar] [CrossRef]
- Tkachenko, O.A.; Giroux-Julien, S.; Timchenko, V.; Ménézo, C.; Yeoh, G.H.; Reizes, J.A.; Sanvicente, E.; Fossa, M. Numerical and experimental investigation of unsteady natural convection in a non-uniformly heated vertical open-ended channel. Int. J. Therm. Sci. 2016, 99, 9–25. [Google Scholar] [CrossRef]
- Zavala-Guillén, I.; Xamán, J.; Álvarez, G.; Arce, J.; Hernández-Pérez, I.; Gijón-Rivera, M. Computational fluid dynamics for modeling the turbulent natural convection in a double air-channel solar chimney system. Int. J. Mod. Phys. 2016, 27, 1650095. [Google Scholar] [CrossRef]
- Zavala-Guillén, I.; Xamán, J.; Hernández-Pérez, I.; Hernández-López, I.; Jiménez-Xamán, C.; Moreno-Bernal, P.; Sauceda, D. Ventilation potential of an absorber-partitioned air channel solar chimney for diurnal use under Mexican climate conditions. Appl. Therm. Eng. 2019, 149, 807–821. [Google Scholar] [CrossRef]
- He, G.; Lv, D. Distributed heat absorption in a solar chimney to enhance ventilation. Sol. Energy 2022, 238, 315–326. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, Y.; Wang, F.; Wang, X. Enhancement of natural ventilation of a novel roof solar chimney with perforated absorber plate for building energy conservation. Appl. Therm. Eng. 2016, 107, 653–661. [Google Scholar] [CrossRef]
- Chen, Z.D.; Bandopadhayay, P.; Halldorsson, J.; Byrjalsen, C.; Heiselberg, P.; Li, Y. An experimental investigation of a solar chimney model with uniform wall heat flux. Build. Environ. 2003, 38, 893–906. [Google Scholar] [CrossRef]
- Wu, S.Y.; Yan, R.R.; Xiao, L. Numerically predicting the effect of fin on solar Trombe wall performance. Sustain. Energy Technol. Assess. 2022, 52, 102012. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Ramiar, A.; Ranjbar, A. Numerical investigation of rectangular fin geometry effect on solar chimney. Energy Build. 2017, 155, 296–307. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Ramiar, A.; Ranjbar, A. Numerical investigation of natural convection solar air heater with different fins shape. Renew. Energy 2018, 117, 488–500. [Google Scholar] [CrossRef]
- Promvonge, P.; Promthaisong, P.; Skullong, S. Numerical heat transfer in a solar air heater duct with punched delta-winglet vortex generators. Case Stud. Therm. Eng. 2021, 26, 101088. [Google Scholar] [CrossRef]
- Jin, D.; Quan, S.; Zuo, J.; Xu, S. Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs. Renew. Energy 2019, 134, 78–88. [Google Scholar] [CrossRef]
- Arunkumar, H.S.; Kumar, S.; Karanth, K.V. Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins—A numerical study. Renew. Energy 2020, 160, 297–311. [Google Scholar] [CrossRef]
- Shi, J.; Hu, J.; Schafer, S.R.; Chen, C.L. Numerical study of heat transfer enhancement of channel via vortex-induced vibration. Appl. Therm. Eng. 2014, 70, 838–845. [Google Scholar] [CrossRef]
- Nguyen, Y.Q.; Huynh, T.N.; Pham, M.-A.H. Modifications of heat transfer and induced flow rate of a solar chimney by an obstacle in the air channel. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 482–488. [Google Scholar] [CrossRef]
- Gandjalikhan Nassab, S.A.; Sheikhnejad, Y.; Foruzan Nia, M. Novel design of natural solar air heat for higher thermal performance. Therm. Sci. Eng. Prog. 2022, 33, 101385. [Google Scholar] [CrossRef]
- Sheikhnejad, Y.; Gandjalikhan Nassab, S.A. Enhancement of solar chimney performance by passive vortex generator. Renew. Energy 2021, 169, 437–450. [Google Scholar] [CrossRef]
- Monghasemi, N.; Vadiee, A. A review of solar chimney integrated systems for space heating and cooling application. Renew. Sustain. Energy Rev. 2018, 81, 2714–2730. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Abdelkareem, M.A.; Elsaid, K.; Sayed, E.T.; Radwan, A.; Rezk, H.; Wilberforce, T.; Abo-Khalil, A.G.; Olabi, A.G. A review of solar chimney for natural ventilation of residential and non-residential building. Sustain. Energy Technol. Assess. 2022, 52, 102082. [Google Scholar] [CrossRef]
- Miyazaki, T.; Akisawa, A.; Kashiwagi, T. The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate. Renew. Energy 2006, 31, 987–1010. [Google Scholar] [CrossRef]
- Chugloo, S.; Limmeechokchai, B. Application of passive cooling system in the hot and humid climate: The case study of solar chimney and wetted roof in Thailand. Build. Environ. 2007, 42, 3341–3351. [Google Scholar] [CrossRef]
- Abdallah, A.S.H.; Hiroshi, Y.; Goto, T.; Enteria, N.; Radwan, M.M.; Eid, M.A. Parametric investigation of solar chimney with new cooling tower integrated in a single room for New Assiut city, Egypt climate. Int. J. Energy Environ. Eng. 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sudpraset, S.; Chinsorranant, C.; Rattanedecho, P. Numerical study of vertical chimneys with moist air in a hot and humid climate. Int. J. Heat Mass Transf. 2016, 102, 645–656. [Google Scholar] [CrossRef]
- Yusoff, W.F.M.; Salleh, E.; Adam, N.M.; Sapian, A.R.; Sulaiman, M.Y. Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack. Build. Environ. 2010, 45, 2296–2308. [Google Scholar] [CrossRef]
- Zhu, N.; Li, S.; Hu, P.; Lei, F.; Deng, R. Numerical investigations on performance of phase change material Trombe wall in building. Energy 2019, 187, 116057. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamora, B. A Review on Solar Chimneys: From Natural Convection Fundamentals to Thermohydraulic Best-Performance Proposals. Processes 2023, 11, 386. https://doi.org/10.3390/pr11020386
Zamora B. A Review on Solar Chimneys: From Natural Convection Fundamentals to Thermohydraulic Best-Performance Proposals. Processes. 2023; 11(2):386. https://doi.org/10.3390/pr11020386
Chicago/Turabian StyleZamora, Blas. 2023. "A Review on Solar Chimneys: From Natural Convection Fundamentals to Thermohydraulic Best-Performance Proposals" Processes 11, no. 2: 386. https://doi.org/10.3390/pr11020386
APA StyleZamora, B. (2023). A Review on Solar Chimneys: From Natural Convection Fundamentals to Thermohydraulic Best-Performance Proposals. Processes, 11(2), 386. https://doi.org/10.3390/pr11020386