Influence of Light Irradiation on Nitrification in Microalgal–Bacterial Systems for Treating Wastewater
Abstract
:1. Introduction
2. Influence of Light Irradiation on AOB
2.1. Photoinhibition of AOB
Nitrifying Microorganism | Light Level | Light Source | Irradiance Time | Finding | References |
---|---|---|---|---|---|
AOB and NOB | 63, 74 μmol m−2·s−1 | White fluorescent tubes | Continuous illumination for 40 days | AOB and NOB were not inhibited by 63 or 74 μmol m−2·s−1 light level | [12] |
AOB and NOB | 105 μmol m−2·s−1 | White fluorescent tubes | Continuous illumination for 30 days | NOB, but not AOB, were inhibited | |
Nitrosomonadaceae AOB and Nitrospiraceae NOB | ≥180 μmol m−2·s−1 | Cool white LED tubes | With a dark/light cycle of 12 h/12 h | NOB were significantly inhibited in the batch reactors | [36] |
Nitrosomonadaceae AOB and Nitrospiraceae NOB | At 225 μmol m−2·s−1 | Cool white LED tubes | With a dark/light cycle of 12 h/12 h | NO2−-N accumulated in batch reactors | |
Nitrosomonadaceae AOB and Nitrospiraceae NOB | The average visible and UV light intensities were 42 and 3 mW cm−2 | Sunlight | Exposed to sunlight for 61 days | Nitrifying bacteria were substantially inhibited in algal–bacterial symbiosis | [32] |
Nitrosomonadaceae AOB and Nitrospiraceae NOB | 200 μmol m−2·s−1 | The light panel was 80% similar to solar light | 10−16 h | The suppression of light on AOB and NOB positively correlated with the light exposure period | [10] |
Nitrosomonadaceae AOB and Nitrospiraceae NOB | 600 μmol m−2·s−1 | The light panel was 80% similar to solar light | 4−5 h | The suppression of light on AOB and NOB positively correlated with the light exposure period | |
Nitrosomonadaceae AOB and Nitrospiraceae NOB | 2000 μmol m−2·s−1 | The light panel was 80% similar to solar light | 2−4 h | The suppression of light on AOB and NOB positively correlated with the light exposure period | |
Nitrifying granular sludge | 450 μmol m−2·s−1 | LED light devices | 12 h | The activity significantly decreased by 50% compared to the dark condition | [24] |
Nitrifying granular sludge | 1600 μmol m−2·s−1 | LED light devices | 12 h | The activity significantly decreased by 70% compared to the dark condition, while in the granular sludge reactors, the activity barely changed | |
Nitrosomonadaceae AOB and Nitrospiraceae NOB | The average light level was 1531 μmol m−2·s−1 | Sunlight | 63 days | Sunlight, algae growth, and free nitrous acid decreased the activity of AOB by 25.7% and completely inhibited NOB activity | [37] |
Nitrosomonas-related AOB and Nitrospira-related NOB | 200 μmol m−2·s−1 | Cool white light-emitting diodes | In continuous dark/light (12 h/12 h) cycles | AOB abundance increased from 0.2% to 2.1%, whereas NOB abundance reduced gradually from 0.07% to below 0.01% | [38] |
Nitrifying bacterial | Below 250 μmol m−2·s−1 | LED lamps | Continuous illumination for 15 days | No significant effect on nitrification activity | [25] |
Nitrifying bacterial | At 500 μmol m−2·s−1 | LED lamps | Continuous illumination for 15 days | It decreased NH4+-N removal by 20% and NO3−-N production by 26% | |
Nitrifying bacterial | At 1250 μmol m−2·s−1 | LED lamps | Continuous illumination for 15 days | It decreased NH4+-N removal by 60% and NO3−-N production by 71% | |
Nitrosomonas AOB and Nitrospira NOB | From 100 to 50 μmol m−2·s−1 | Continuous illumination for 105 days | A syntrophic algal/partial nitrification/anammox granular sludge process was developed | [39] |
2.2. Effect of Light on AOB Biodiversity
2.3. Light Stimulation of AOB Growth
3. Photoinhibition of NOBs
4. Resistance to Light Radiation
5. Influence of Light-Induced Nitrification Changes on Microalgae
6. Implementation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Drecht, G.; Bouwman, A.F.; Harrison, J.; Knoop, J.M. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Global Biogeochem. Cycles 2009, 23, GB0A03. [Google Scholar] [CrossRef]
- Rosso, D.; Larson, L.E.; Stenstrom, M.K. Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Sci. Technol. 2008, 57, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Akizuki, S.; Kishi, M.; Cuevas-Rodriguez, G.; Toda, T. Effects of different light conditions on ammonium removal in a consortium of microalgae and partial nitrifying granules. Water Res. 2020, 171, 115445. [Google Scholar] [CrossRef] [PubMed]
- Karya, N.; van der Steen, N.P.; Lens, P.N.L. Photo-oxygenation to support nitrification in an algal-bacterial consortium treating artificial wastewater. Bioresour. Technol. 2013, 134, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Adav, S.S.; Lee, D.J. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J. Hazard. Mater. 2008, 154, 1120–1126. [Google Scholar] [CrossRef]
- Wei, X.M.; Sayavedra-Soto, L.A.; Arp, D.J. The transcription of the cbb operon in Nitrosomonas europaea. Microbiology 2004, 150, 1869–1879. [Google Scholar] [CrossRef]
- Soliman, M.; Eldyasti, A. Ammonia-oxidizing bacteria (AOB): Opportunities and applications-a review. Rev. Environ. Sci. Bio-Technol. 2018, 17, 285–321. [Google Scholar] [CrossRef]
- Daims, H.; Lucker, S.; Wagner, M. A New perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 2016, 24, 699–712. [Google Scholar] [CrossRef]
- Juliette, L.Y.; Hyman, M.R.; Arp, D.J. Mechanism-based inactivation of ammonia monooxygenase in Nitrosomonas europaea by allylsulfide. Appl. Environ. Microbiol. 1993, 59, 3728–3735. [Google Scholar] [CrossRef]
- Wang, L.F.; Qiu, S.; Guo, J.H.; Ge, S.J. Light irradiation enables rapid start-up of nitritation through suppressing nxrB gene expression and stimulating ammonia oxidizing bacteria. Environ. Sci. Technol. 2021, 55, 13297–13305. [Google Scholar] [CrossRef]
- Nishi, K.; Akizuki, S.; Toda, T.; Matsuyama, T.; Ida, J. Advanced light-tolerant microalgae-nitrifying bacteria consortia for stable ammonia removal under strong light irradiation using light-shielding hydrogel. Chemosphere 2022, 297, 134252. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Wang, D.; Song, S.; Wei, W.; Nghiem, L.D.; Ni, B.J. A novel mechanistic model for nitrogen removal in algal-bacterial photo sequencing batch reactors. Bioresour. Technol. 2018, 267, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, J.M.; Timmons, M.B.; Bisogni, J.J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 2006, 257, 346–358. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.M.; Liu, X.G.; Liu, C.; Wang, X.D.; Cheng, G.F. Review of ammonia-oxidizing bacteria and archaea in freshwater ponds. Rev. Environ. Sci. Bio-Technol. 2019, 18, 1–10. [Google Scholar] [CrossRef]
- Cho, S.; Fujii, N.; Lee, T.; Okabe, S. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresour. Technol. 2011, 102, 652–659. [Google Scholar] [CrossRef]
- Kim, K.; Park, Y.G. Light as a novel inhibitor of nitrite-oxidizing bacteria (NOB) for the mainstream partial nitrification of wastewater treatment. Processes 2021, 9, 346. [Google Scholar] [CrossRef]
- Schön, G.H.; Engel, H. Der Einfluß des Lichtes auf Nitrosomonas europaea Win. Arch. Mikrobiol. 1962, 42, 415–428. [Google Scholar] [CrossRef]
- Guerrero, M.A. Photoinhibition of marine nitrifying bacteria. I. Wavelength-dependent response. Mar. Ecol. Prog. Ser. 1996, 141, 183–192. [Google Scholar] [CrossRef]
- Liu, Q.; Tolar, B.B.; Ross, M.J.; Cheek, J.B.; Sweeney, C.M.; Wallsgrove, N.J.; Popp, B.N.; Hollibaugh, J.T. Light and temperature control the seasonal distribution of thaumarchaeota in the South Atlantic bight. Isme J. 2018, 12, 1473–1485. [Google Scholar] [CrossRef]
- Peng, X.F.; Fawcett, S.E.; van Oostende, N.; Wolf, M.J.; Marconi, D.; Sigman, D.M.; Ward, B.B. Nitrogen uptake and nitrification in the subarctic North Atlantic Ocean. Limnol. Oceanogr. 2018, 63, 1462–1487. [Google Scholar] [CrossRef]
- Lipschultz, F.; Wofsy, S.C.; Fox, L.E. The effects of light and nutrients on rates of ammonium transformation in a eutrophic river. Mar. Chem. 1985, 16, 329–341. [Google Scholar] [CrossRef]
- Merbt, S.N.; Auguet, J.C.; Casamayor, E.O.; Marti, E. Biofilm recovery in a wastewater treatment plant-influenced stream and spatial segregation of ammonia-oxidizing microbial populations. Limnol. Oceanogr. 2011, 56, 1054–1064. [Google Scholar] [CrossRef]
- Akizuki, S.; Natori, N.; Cuevas-Rodriguez, G.; Toda, T. Application of nitrifying granular sludge for stable ammonium oxidation under intensive light. Biochem. Eng. J. 2020, 160, 107631. [Google Scholar] [CrossRef]
- Vergara, C.; Muñoz, R.; Campos, J.L.; Seeger, M.; Jeison, D. Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int. Biodeterior. Biodegrad. 2016, 114, 116–121. [Google Scholar] [CrossRef]
- Merbt, S.N.; Stahl, D.A.; Casamayor, E.O.; Marti, E.; Nicol, G.W.; Prosser, J.I. Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiol. Lett. 2012, 327, 41–46. [Google Scholar] [CrossRef]
- Fisher, O.S.; Kenney, G.E.; Ross, M.O.; Ro, S.Y.; Lemma, B.E.; Batelu, S.; Thomas, P.M.; Sosnowski, V.C.; DeHart, C.J.; Kelleher, N.L.; et al. Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat. Commun. 2018, 9, 4276. [Google Scholar] [CrossRef]
- Shears, J.H.; Wood, P.M. Spectroscopic evidence for a photosensitive oxygenated state of ammonia mono-oxygenase. Biochem 1985, 226, 499–507. [Google Scholar] [CrossRef]
- Lu, S.M.; Liu, X.G.; Liu, C.; Cheng, G.F.; Shen, H.Y. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems. Rev. Environ. Sci. Bio-Technol. 2020, 19, 531–542. [Google Scholar] [CrossRef]
- Berney, M.; Weilenmann, H.-U.; Egli, T. Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight. Environ. Microbiol. 2006, 8, 1635–1647. [Google Scholar] [CrossRef]
- Yang, M.Z.; Qiu, S.; Wang, L.F.; Chen, Z.P.; Hu, Y.B.; Guo, J.H.; Ge, S.J. Effect of short-term light irradiation with varying energy densities on the activities of nitrifiers in wastewater. Water Res. 2022, 216, 118291. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.L.; Li, B.; Zhang, C.; Zhang, Z.Y.; Lei, Z.F.; Lu, B.W.; Zhou, B.B. Effect of algae growth on aerobic granulation and nutrients removal from synthetic wastewater by using sequencing batch reactors. Bioresour. Technol. 2015, 179, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.X.; Cheng, M.L.; Zhao, S.M.; Peng, N.; Hu, R.G.; Hu, J.L.; Liang, Y.X. Algal growth enhances light-mediated limitation of bacterial nitrification in an aquaculture system. Water Air Soil Pollut. 2020, 231, 73. [Google Scholar] [CrossRef]
- Smith, J.M.; Chavez, F.P.; Francis, C.A. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean. PLoS ONE 2014, 9, e108173. [Google Scholar] [CrossRef] [PubMed]
- Risgaard-Petersen, N.; Nicolaisen, M.H.; Revsbech, N.P.; Lomstein, B.A. Competition between ammonia-oxidizing bacteria and benthic microalgae. Appl. Environ. Microbiol. 2004, 70, 5528–5537. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.S.; Xi, L.M.; Liu, D.F.; Huang, W.W.; Lei, Z.F.; Zhang, Z.Y.; Huang, W.L. Effects of light intensity on oxygen distribution, lipid production and biological community of algal-bacterial granules in photo-sequencing batch reactors. Bioresour. Technol. 2019, 272, 473–481. [Google Scholar] [CrossRef]
- Huang, W.L.; Liu, D.F.; Huang, W.W.; Cai, W.; Zhang, Z.Y.; Lei, Z.F. Achieving partial nitrification and high lipid production in an algal-bacterial granule system when treating low COD/NH4-N wastewater. Chemosphere 2020, 248, 126106. [Google Scholar] [CrossRef]
- Si, G.C.; Liu, B.; Liu, Y.R.; Yan, T.; Wei, D. Light-introduced partial nitrification in an algal-bacterial granular sludge bioreactor: Performance evolution and microbial community shift. Bioresour. Technol. 2022, 354, 127226. [Google Scholar] [CrossRef]
- Kong, L.R.; Zheng, R.; Feng, Y.M.; Du, W.R.; Xie, C.; Gu, Y.Q.; Liu, S.T. Anammox bacteria adapt to long-term light irradiation in photogranules. Water Res. 2023, 241, 120144. [Google Scholar] [CrossRef]
- Hyman, M.R.; Arp, D. 14C2H2-and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J. Biol. Chem. 1992, 267, 1534–1545. [Google Scholar] [CrossRef]
- Harris, S.H.; Smith, R.L. In situ measurements of microbially-catalyzed nitrification and nitrate reduction rates in an ephemeral drainage channel receiving water from coalbed natural gas discharge, Powder River Basin, Wyoming, USA. Chem. Geol. 2009, 267, 77–84. [Google Scholar] [CrossRef]
- Lei, Y.Z. Environmental Chemistry of Aquaculture Water; China Aguriculture Press: Beijing, China, 2003. [Google Scholar]
- Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 2012, 356, 351–356. [Google Scholar] [CrossRef]
- Zhou, R.F.; Li, Y.Y.; Xiao, S.W.; Liu, X.G.; Liu, C.; Cheng, G.F.; Zhang, W.; Lu, S.M. Ecophysiological characterization of a nitrite-oxidizing bacterial culture from a freshwater aquaculture pond. Biotechnol. Biotechnol. Equip. 2022, 36, 891–901. [Google Scholar] [CrossRef]
- Philips, S.; Laanbroek, H.J.; Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Bio-Technol. 2002, 1, 115–141. [Google Scholar] [CrossRef]
- Barak, Y.; Tal, Y.; Rijn, J.v. Light-mediated nitrite accumulation during denitrification by Pseudomonas sp. Strain JR12. Appl. Environ. Microbiol. 1998, 64, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, S.P.; Stamps, R.H.; Giglia, F.F. Environmental modification inside photoselective shadehouses. Hortscience 2013, 48, 975–979. [Google Scholar] [CrossRef]
- Akizuki, S.; Cuevas-Rodriguez, G.; Toda, T. Microalgal-nitrifying bacterial consortium for energy-saving ammonia removal from anaerobic digestate of slaughterhouse wastewater. J. Water Process. Eng. 2019, 31, 100753. [Google Scholar] [CrossRef]
- Wang, Z.W.; Liu, Y.; Tay, J.H. Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl. Microbiol. Biotechnol. 2005, 69, 469–473. [Google Scholar] [CrossRef]
- Nishi, K.; Akizuki, S.; Toda, T.; Matsuyama, T.; Ida, J. Effects of different biomass ratios of light-tolerant microalgae-nitrifying bacteria consortia on ammonia removal. Biochem. Eng. J. 2023, 193, 108872. [Google Scholar] [CrossRef]
- Emerson, K.; Russo, R.C.; Lund, R.E.; Thurston, R.V. Aqueous ammonia equilibrium calculations: Effect of pH and temperature. J. Fish. Res. Board Can. 1975, 32, 2379–2383. [Google Scholar] [CrossRef]
- Azov, Y.; Goldman, J.C. Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl. Environ. Microbiol. 1982, 43, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Pulz, O. Photobioreactors: Production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 2001, 57, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.; Le, L.T.; Jeon, J.; Noh, J.; Jang, Y.; Kang, D.; Jahng, D. Effects of light and mass ratio of microalgae and nitrifiers on the rates of ammonia oxidation and nitrate production. Biochem. Eng. J. 2020, 161, 107656. [Google Scholar] [CrossRef]
- Liu, X.G. Comparing three mathematical models using different substrates for prediction of partial nitrification. Sci. Total Environ. 2020, 749, 141643. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.J.; Guo, Y.; Wang, Q.H.; Zhang, Z.; Wu, C.F.; Gao, M.; Liu, F. The summary of nitritation process in mainstream wastewater treatment. Sustainability 2022, 14, 16453. [Google Scholar] [CrossRef]
- Zhang, G.; Ruan, J.; Du, T. Recent advances on photocatalytic and electrochemical oxidation for ammonia treatment from water/wastewater. ACS ES&T Engg. 2021, 1, 310–325. [Google Scholar] [CrossRef]
- Fisheries Bureau, Ministry of Agriculture and Rural Afairs of the People’s Republic of China. China Fisheries Statistics Yearbook 2022; China Agriculture Press: Beijing, China, 2022.
- Chang, W.Y.B.; Ouyang, H. Dynamics of dissolved oxygen and vertical circulation in fish ponds. Aquaculture 1988, 74, 263–276. [Google Scholar] [CrossRef]
- Lu, S.M.; Liu, X.G.; Liu, C.; Cheng, G.F.; Zhou, R.F.; Li, Y.Y. A review of ammonia-oxidizing archaea and anaerobic ammonia-oxidizing bacteria in the aquaculture pond environment in China. Front. Microbiol. 2021, 12, 775794. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Li, Y.; Liu, X.; Cheng, G.; Yuan, Z.; Wu, F. Influence of Light Irradiation on Nitrification in Microalgal–Bacterial Systems for Treating Wastewater. Processes 2023, 11, 3453. https://doi.org/10.3390/pr11123453
Lu S, Li Y, Liu X, Cheng G, Yuan Z, Wu F. Influence of Light Irradiation on Nitrification in Microalgal–Bacterial Systems for Treating Wastewater. Processes. 2023; 11(12):3453. https://doi.org/10.3390/pr11123453
Chicago/Turabian StyleLu, Shimin, Yayuan Li, Xingguo Liu, Guofeng Cheng, Zehui Yuan, and Fan Wu. 2023. "Influence of Light Irradiation on Nitrification in Microalgal–Bacterial Systems for Treating Wastewater" Processes 11, no. 12: 3453. https://doi.org/10.3390/pr11123453