Total Organic Carbon Logging Evaluation of Shale Hydrocarbon Source Rocks in the Shan 1 Section of the Sulige Gas Field, Ordos Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Principles
4. Building Models (Jinqiang Method)
5. Inverse Fitting
6. Evaluation of TOC in the Sulige Gas Field Using Logging Data
6.1. Single Well Evaluation
6.2. Multi-Well Evaluation
7. Classification of Oil-Generation Potential in Hydrocarbon Source Rock Reservoirs
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burton, Z.F.M.; Moldowan, J.M.; Magoon, L.B.; Sykes, R.; Graham, S.A. Interpretation of source rock depositional environment and age from seep oil, east coast of New Zealand. Int. J. Earth Sci. 2019, 108, 1079–1091. [Google Scholar] [CrossRef]
- Handhal, A.M.; Al-Abadi, A.M.; Chafeet, H.E.; Ismail, M.J. Prediction of total organic carbon at Rumaila oil field, Southern Iraq using conventional well logs and machine learning algorithms. Mar. Pet. Geol. 2020, 116, 104347. [Google Scholar] [CrossRef]
- Burton, Z.; Dafov, L.N. Testing the sediment organic contents required for biogenic gas hydrate formation: Insights from synthetic 3-D basin and hydrocarbon system modelling. Fuels 2022, 3, 33. [Google Scholar] [CrossRef]
- Burton, Z.F.M. Sediment Organic Contents Required for Gas Hydrate Formation: A Survey of Published Basin and Hydrocarbon System Models. Fuels 2022, 3, 35. [Google Scholar] [CrossRef]
- Langford, F.F.; Blanc-Valleron, M.M. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. Am. Assoc. Pet. Geol. Bull. 1990, 74, 799–804. [Google Scholar]
- Liu, Z.; Meng, Q.; Dong, Q.; Zhu, J.; Guo, W.; Ye, S.; Liu, R.; Jia, J. Characteristics and resource potential of oil shale in China. Oil Shale 2017, 34, 15. [Google Scholar] [CrossRef]
- Luffel, D.L.; Guidry, F.K.; Curtis, J.B. Evaluation of Devonian shale withnew core and log analysis-methods. J. Pet. 1992, 44, 1192–1197. [Google Scholar]
- Wang, G.; Zhu, Z.; Zhu, G. Logging identification and evaluation of Cambrian-Ordovician source rocks in syneclise of Tarim basin. Pet. Explor. Dev. 2002, 29, 50–52. [Google Scholar]
- Lohr, S.; Baruch, E.T.; Hall, P.A.; Kennedy, M.J. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter. Org. Geochem. 2015, 87, 119–132. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Elkatatny, S.; Mahmoud, M.; Abouelresh, M.; Abdulraheem, A.; Ali, A. Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network. Int. J. Coal Geol. 2017, 179, 72–80. [Google Scholar] [CrossRef]
- He, T.H.; Li, W.H.; Lu, S.F.; Yang, E.Q.; Jing, T.T.; Ying, J.F.; Zhu, P.F.; Wang, X.Z.; Pan, W.Q.; Zhang, B.S.; et al. Quantitatively unmixing method for complex mixed oil based on its fractions carbon isotopes: A case from the Tarim Basin, NW China. Pet. Sci. 2023, 20, 102–113. [Google Scholar] [CrossRef]
- Wang, H.; Wu, W.; Chen, T.; Dong, X.; Wang, G. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs. J. Pet. Sci. Eng. 2019, 176, 664–678. [Google Scholar] [CrossRef]
- Roland, F. Beers. Radioactivity and Organic Content of Some Paleozoic Shales. AAPG Bull. 1945, 29, 1–22. [Google Scholar]
- Swanson, V.E. Oil Yield and Uranium Content of Black Shales; United States Geological Survey: Washington, DC, USA, 1960. [Google Scholar]
- Passey, Q.R.; Creaney, S.; Kulla, J.B.; Moretti, F.J.; Stroud, J.D. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bull. 1990, 74, 1777–1794. [Google Scholar]
- Zhu, G.; Jin, Q.; Zhang, L. Using Log Information to Analyze the Geochemical Characteristics of Source Rocks in Jiyang Depression. Well Logging Technol. 2003, 27, 104–109, 146. [Google Scholar]
- Mendelzon, J.D.; Nafi Toksoz, M. Source Rock Characterization Using Multivariate Analysis of Log Data. In Proceedings of the SPWLA 26th Annual Logging Symposium, Dallas, TX, USA, 17–20 June 1985. [Google Scholar]
- Kamali, M.R.; Mirshady, A.A. Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques. J. Pet. Sci. Eng. 2004, 45, 141–148. [Google Scholar] [CrossRef]
- He, X.; Chen, S.; Hu, C.; Zhang, H.; Mou, F.; Dai, L.; Lu, Y.; Fu, X.; Han, M. Pore Structure Change in the Continental Shale Oil Reservoir and Its Main Influencing Factors: A Case Study of the Chang 7 Member in the Ordos Basin. Processes 2023, 11, 2314. [Google Scholar] [CrossRef]
- Chen, R.; Wang, F.; Li, Z.; Evans, N.; Chen, H. Detrital zircon geochronology of the Permian Lower Shihezi Formation, northern Ordos Basin, China: Time constraints for closing of the Palaeo-Asian Ocean. Geol. Mag. 2022, 159, 1601–1620. [Google Scholar] [CrossRef]
- Song, L.-J.; Wang, Z.-Z. Late Triassic tectonic stress field of the southwestern Ordos Basin and its tectonic implications: Insights from finite-element numerical simulations. Geosphere 2023, 19, 770–781. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, K.; Liu, K.; He, S. A sequence stratigraphic model for reservoir sand-body distribution in the Lower Permian Shanxi Formation in the Ordos Basin, northern China. Mar. Pet. Geol. 2008, 25, 731–743. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, X.; Chen, S.; Liu, J.; Jia, C. Characteristics of sedimentary evolution in the Upper Paleozoic Daniudi Gasfield, Ordos Basin. Acta Sedimentol. Sin. 2015, 33, 306–313. [Google Scholar]
- Greb, S.F.; Chesnut Jr, D.R. Lower and lower Middle Pennsylvanian fluvial to estuarine deposition, central Appalachian basin: Effects of eustasy, tectonics, and climate. Geol. Soc. Am. Bull. 1996, 108, 303–317. [Google Scholar] [CrossRef]
- Burton, Z.F.; McHargue, T.; Kremer, C.H.; Bloch, R.B.; Gooley, J.T.; Jaikla, C.; Harrington, J.; Graham, S.A. Peak Cenozoic warmth enabled deep-sea sand deposition. Sci. Rep. 2023, 13, 1276. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Chen, H.; Duan, Z.; Qiu, Z.; Zhou, X.; Hou, Y. The Characteristics of Lithofacies and Depositional Model of Fine-Grained Sedimentary Rocks in the Ordos Basin, China. Energies 2023, 16, 2390. [Google Scholar] [CrossRef]
- Meng, D.W.; Jia, A.L.; Ji, G.; He, D.B. Water and gas distribution and its controlling factors of large scale tight sand gas fields: A case study of western Sulige gas field, Ordos Basin, NW China. Pet. Explor. Dev. 2016, 43, 663–671. [Google Scholar] [CrossRef]
- Mou, C.G.; Hu, Z.J.; Bai, J.W.; Zhang, H.J. The causes and prevention of gas hydrate measures in Sulige gasfield. Petrochem. Ind. Appl. 2009, 28, 41–45. [Google Scholar]
- Elkatatny, S. A self-adaptive artificial neural network technique to predict total organic carbon (TOC) based on well logs. Arab. J. Sci. Eng. 2019, 44, 6127–6137. [Google Scholar] [CrossRef]
- Kilian, L. The impact of the shale oil revolution on US oil and gasoline prices. Rev. Environ. Econ. Policy 2016, 10, 185–205. [Google Scholar] [CrossRef]
- Pang, X.; Chen, Z.; Lerche, I. Uncertainty analysis and the relative contributions of geological factors for the Qingshankou source rocks in the North Songliao Basin, northeastern China. Nonrenew. Resour. 1977, 6, 263–271. [Google Scholar] [CrossRef]
- Tan, M.; Liu, Q.; Zhang, S. A dynamic adaptive radial basis function approach for total organic carbon content prediction in organic shale. Geophysics 2013, 78, D445–D459. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, C.; Zhang, C.; Wei, Y.; Zhou, X.; Cheng, Y.; Huang, Y.; Zhang, L. Prediction of total organic carbon content in shale reservoir based on a new integrated hybrid neural network and conventional well logging curves. J. Geophys. Eng. 2018, 15, 1050–1061. [Google Scholar] [CrossRef]
- Wang, J.-X.; Sun, P.-C.; Liu, Z.-J.; Xu, Y.-B.; Li, L. Evaluation of oil shale resources based on geochemistry and logging in Tuanyushan, Qaidam Basin, Northwest China. Oil Shale 2020, 37, 188–206. [Google Scholar] [CrossRef]
- Herrson, S.; Letendre, I.; Dufour, M. Source rock evaluation by sonic log and seismic velocity analysis in parts of upper Assam Basin, India. Org. Geochem. 1995, 23, 871–879. [Google Scholar]
- Chen, Z.; Jiang, C. A revised method for organic porosity estimation using Rock-Eval pyrolysis data, example from Duvernay Shale in the Western Canada Sedimentary Basin. AAPG Bull. 2016, 100, 405–422. [Google Scholar] [CrossRef]
- Liu, R.; Guo, S.; Wang, J. TOC calculation model of source rocks: Case study from Taiyuan-Shanxi formations in Ordos Basin. Nat. Gas Geosci. 2020, 31, 1628–1636. [Google Scholar]
- Guo, Q.; Jiang, S.; Wang, J.; Zhou, Q.; Gao, Y.; Ye, L.; Yin, J. Prediction of hydrocarbon source rock distribution using logging curves: A case study of Es32 source rock in Nanpu Sag, Huanghua depression, Bohai Bay Basin. Front. Earth Sci. 2023, 10, 1097806. [Google Scholar] [CrossRef]
- Kang, H.Q. Controlling factors of hydrocarbon source rock development in the Madingo Formation of the Lower Congo Basin and its control on hydrocarbon formation. China Offshore Oil Gas 2021, 33, 11–24. [Google Scholar]
- Hou, Z.P.; Pang, X.Q.; Ouyang, X.C.; Zhang, B.; Shen, W.; Guo, F.; Wang, W. Upper limit of maturity for hydrocarbon generation in carbonate source rocks in the Tarim Basin Platform, China. Arab. J. Geosci. 2015, 8, 2497–2514. [Google Scholar]
- Huang, W.B.; Hersi, O.S.; Lu, S.F.; Deng, S. Quantitative modelling of hydrocarbon expulsion and quality grading of tight oil lacustrine source rocks: Case study of Qingshankou 1 member, central depression, Southern Songliao Basin, China. Mar. Pet. Geol. 2017, 84, 34–48. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar]
- Peters, K.E.; Cassa, M.R. Applied source rock geochemistry. In The Petroleum System-From Source Rock to Trap; Magoon, L.B., Dow, W.G., Eds.; AAPG Memoir: Houston, TX, USA, 1994; Volume 60, pp. 93–120. [Google Scholar]
- Chen, J.; Chen, J.; Ni, Y.; Fan, M.; Liao, F.; Wei, J.; Han, Y. The origin and source of crude oils in the Jiuxi depression, Jiuquan Basin. Acta Pet. Sin. 2019, 40, 761–776. [Google Scholar]
Well Name | Section | Depth (m) | TOC (wt.%) | R (Ω·m) | Δt (μs/m) | D (g/cm3) |
---|---|---|---|---|---|---|
A105 | Shan 2 | 3612.17 | 2.83 | 53.692 | 212.153 | 2.662 |
A105 | Shan 2 | 3615.28 | 3.62 | 67.330 | 218.615 | 2.674 |
A105 | Shan 2 | 3622.73 | 2.78 | 58.026 | 221.385 | 2.691 |
A105 | Shan 2 | 3633.34 | 1.76 | 56.962 | 240.049 | 2.426 |
A148 | Shan 1 | 3694.11 | 0.57 | 42.885 | 232.06 | 2.570 |
A148 | Shan 1 | 3713.71 | 1.56 | 42.801 | 213.408 | 2.642 |
A148 | Shan 1 | 3715.11 | 2.41 | 57.285 | 224.028 | 2.586 |
A148 | Shan 1 | 3716.28 | 7.49 | 138.482 | 205.487 | 2.238 |
A148 | Shan 1 | 3722.12 | 5.22 | 87.184 | 217.548 | 2.643 |
A148 | Shan 1 | 3726.35 | 4.71 | 85.274 | 223.845 | 2.683 |
A180 | Shan 1 | 3691.74 | 0.82 | 47.813 | 235.468 | 2.553 |
A180 | Shan 1 | 3694.22 | 3.41 | 67.185 | 221.574 | 2.674 |
A180 | Shan 1 | 3696.71 | 3.12 | 64.025 | 223.153 | 2.651 |
A180 | Shan 1 | 3697.18 | 4.82 | 87.115 | 224.274 | 2.648 |
A180 | Shan 1 | 3700.31 | 2.49 | 51.283 | 215.084 | 2.693 |
A180 | Shan 1 | 3704.42 | 2.86 | 87.886 | 209.035 | 2.678 |
Depth (m) | GR (API) | AC (μs/m) | HLLD (Ω·m) | DEN (g/cm3) | a × lg (HLLD) + b × AC + c | TOC (wt.%) | Sandstone or Borehole |
---|---|---|---|---|---|---|---|
3231 | 157.536 | 242.375 | 31.001 | 2.647 | −1.684 | −0.636 | Borehole |
3233 | 153.291 | 240.490 | 24.390 | 2.334 | −4.277 | −1.832 | Borehole |
3235 | 128.244 | 227.340 | 40.394 | 2.760 | 2.327 | 0.843 | |
3237 | 135.987 | 206.346 | 88.295 | 2.761 | 12.605 | 4.565 | |
3239 | 96.138 | 205.565 | 59.483 | 2.659 | 8.179 | 3.076 | |
3241 | 141.975 | 238.565 | 34.722 | 2.706 | −0.143 | −0.053 | Borehole |
3243 | 134.064 | 222.138 | 41.581 | 2.730 | 3.005 | 1.101 | |
3245 | 120.587 | 218.626 | 67.330 | 2.692 | 8.706 | 3.234 | |
3247 | 97.698 | 200.332 | 121.995 | 2.712 | 16.674 | 6.148 | |
3249 | 118.197 | 218.771 | 46.222 | 2.679 | 4.431 | 1.654 | |
3251 | 105.059 | 198.740 | 100.918 | 2.633 | 14.631 | 5.557 | |
3253 | 141.411 | 234.789 | 35.862 | 2.737 | 0.477 | 0.174 | |
3255 | 152.738 | 239.350 | 32.072 | 2.606 | −1.096 | −0.421 | Borehole |
3257 | 149.449 | 240.608 | 37.328 | 2.733 | 0.540 | 0.198 | |
3259 | 128.134 | 224.499 | 60.372 | 2.670 | 7.074 | 2.649 | |
3261 | 132.278 | 208.357 | 58.902 | 2.687 | 7.880 | 2.933 | |
3263 | 152.161 | 233.414 | 36.502 | 2.647 | 0.770 | 0.291 | |
3265 | 109.142 | 218.176 | 140.220 | 2.664 | 17.053 | 6.401 | |
3267 | 155.075 | 227.667 | 23.411 | 2.620 | −3.879 | −1.481 | Borehole |
3269 | 120.272 | 220.972 | 106.551 | 2.712 | 13.752 | 5.071 | |
3271 | 142.313 | 310.676 | 192.522 | 2.237 | 14.428 | 6.450 | Borehole |
3273 | 145.433 | 216.707 | 82.654 | 2.685 | 11.159 | 4.156 | |
3275 | 188.066 | 209.112 | 82.901 | 2.575 | 11.704 | 4.545 | |
3277 | 140.628 | 218.640 | 64.815 | 2.711 | 8.273 | 3.052 | |
3279 | 146.027 | 210.236 | 81.693 | 2.722 | 11.462 | 4.211 | |
3281 | 81.564 | 204.691 | 72.875 | 2.658 | 10.540 | 3.965 | Sandstone |
3283 | 57.245 | 226.462 | 33.478 | 2.573 | 0.257 | 0.100 | Sandstone |
3285 | 135.051 | 215.962 | 84.273 | 2.717 | 11.429 | 4.207 | |
3287 | 149.990 | 230.053 | 102.099 | 2.704 | 12.657 | 4.681 | |
3289 | 111.051 | 211.921 | 192.710 | 2.704 | 21.079 | 7.795 | |
3291 | 159.580 | 254.866 | 259.557 | 2.159 | 21.567 | 9.990 | Sandstone |
3293 | 156.723 | 237.236 | 52.078 | 2.704 | 4.542 | 1.680 | |
3295 | 132.585 | 225.801 | 81.943 | 2.713 | 10.450 | 3.852 | |
3297 | 87.386 | 207.338 | 68.551 | 2.634 | 9.668 | 3.671 | Sandstone |
3299 | 118.378 | 208.905 | 53.418 | 2.565 | 6.735 | 2.626 |
Well Name | <2 wt.% | ≥2 wt.% | Data Range (wt.%) | Sample | TOC Calculation of Average Values (wt.%) | TOC Measured in Core Experiments (wt.%) | Absolute Error (%) | Percent Error (%) |
---|---|---|---|---|---|---|---|---|
AB49-25 | 6 | 19 | 0.174~7.795 | 25 | 3.338 | 3.19 | 0.148 | 4.368 |
AB59-06 | 5 | 20 | 0.236~8.366 | 25 | 3.649 | 3.75 | 0.101 | 2.768 |
AB61-04 | 8 | 14 | 0.234~6.445 | 22 | 3.140 | 2.84 | 0.3 | 9.554 |
AB61-48 | 4 | 9 | 0.595~6.656 | 13 | 3.369 | 3.16 | 0.209 | 6.203 |
AB66-01 | 6 | 13 | 0.045~4.509 | 19 | 2.648 | 2.53 | 0.118 | 4.456 |
AB70-05 | 4 | 10 | 0.987~7.270 | 14 | 3.902 | 3.77 | 0.132 | 3.383 |
AB68-09 | 7 | 11 | 0.885~6.471 | 18 | 2.376 | 2.38 | 0.004 | 0.168 |
AB43-5 | 7 | 8 | 0.299~8.157 | 15 | 3.200 | 3.13 | 0.07 | 2.188 |
AB44-36 | 11 | 7 | 0.009~5.367 | 18 | 2.221 | 2.14 | 0.081 | 3.65 |
AB72-09 | 4 | 12 | 1.158~4.132 | 18 | 2.529 | 2.63 | 0.101 | 3.994 |
Overall analysis | 62 | 123 | 0.009~8.366 | 185 | 3.042 | 2.96 | 0.082 | 2.70 |
Oil Generating Potential | Mudstone | Carbonate |
---|---|---|
Bad | <0.5 | <0.12 |
Medium | 0.5~1.0 | 0.12~0.25 |
Good | 1.0~2.0 | 0.25~0.50 |
Very good | 2.0~4.0 | 0.50~1.00 |
Excellent | 4.0~8.0 | 1.00~2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Xu, B.; Song, T.; Chen, Y.; Deng, L.; Du, H. Total Organic Carbon Logging Evaluation of Shale Hydrocarbon Source Rocks in the Shan 1 Section of the Sulige Gas Field, Ordos Basin, China. Processes 2023, 11, 3214. https://doi.org/10.3390/pr11113214
Wang T, Xu B, Song T, Chen Y, Deng L, Du H. Total Organic Carbon Logging Evaluation of Shale Hydrocarbon Source Rocks in the Shan 1 Section of the Sulige Gas Field, Ordos Basin, China. Processes. 2023; 11(11):3214. https://doi.org/10.3390/pr11113214
Chicago/Turabian StyleWang, Tong, Bo Xu, Ting Song, Yatong Chen, Liangguang Deng, and Hongmei Du. 2023. "Total Organic Carbon Logging Evaluation of Shale Hydrocarbon Source Rocks in the Shan 1 Section of the Sulige Gas Field, Ordos Basin, China" Processes 11, no. 11: 3214. https://doi.org/10.3390/pr11113214
APA StyleWang, T., Xu, B., Song, T., Chen, Y., Deng, L., & Du, H. (2023). Total Organic Carbon Logging Evaluation of Shale Hydrocarbon Source Rocks in the Shan 1 Section of the Sulige Gas Field, Ordos Basin, China. Processes, 11(11), 3214. https://doi.org/10.3390/pr11113214