Improving the Shelf Life and Quality of Minced Beef by Cassia Glauca Leaf Extracts during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Cassia Glauca Leaf Extract (CGE)
2.2. Preparation of Minced Beef Samples
2.3. Sensory Evaluation of Minced Beef Samples
2.4. Chemical Analysis of Minced Beef Samples
2.4.1. pH Measurement
2.4.2. Determination of the Total Volatile Basic Nitrogen Content (TVBN) (mg/100 g)
2.4.3. Determination of Thiobarbituric Acid (TBA)
2.4.4. Determination of Peroxide Value (PV)
2.5. Microbiological Examination of Minced Beef Samples
2.6. Statistical Analysis
3. Results
3.1. Sensory Evaluation of Minced Beef Samples
3.2. Chemical Analysis of Minced Beef Samples
3.2.1. Hydrogen Ion Concentration (pH) of Minced Beef Samples
3.2.2. Total Volatile Nitrogen of Minced Beef Samples
3.2.3. Thiobarbituric Acid Reactive Substances of Minced Beef Samples
3.2.4. Peroxide Values of Minced Beef Samples (PV)
3.3. Microbiological Examination of Minced Beef with CGE
3.3.1. Total Aerobic Bacterial Count (TABC) of Minced Beef Samples
3.3.2. Total Psychrotrophic Count (TPC) of Minced Beef Samples
3.3.3. Total Enterobacteriaceae Count (TEC) of Minced Beef Samples
3.3.4. Total Staphylococcal Count (TSC) of Minced Beef Samples
3.3.5. Total Mold and Yeast Count of Minced Beef Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bereżnicka, J.; Pawlonka, T. Meat consumption as an indicator of economic well-being—Case study of a developed and developing economy. Acta Sci. Polonorum. Oeconomia 2018, 17, 17–26. [Google Scholar] [CrossRef]
- Amiri, E.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Sci. 2019, 153, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Nanda, P.; Das, A.; Biswas, S. Hazards and safety issues of meat and meat products. In Food Safety and Human Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 145–168. [Google Scholar]
- Fernandes, R.d.P.P.; Trindade, M.A.; Lorenzo, J.; Munekata, P.E.S.; De Melo, M. Effects of oregano extract on oxidative, microbiological and sensory stability of sheep burgers packed in modified atmosphere. Food Control 2016, 63, 65–75. [Google Scholar] [CrossRef]
- Armenteros, M.; Toldra, F.; Aristoy, M.-C.n.; Ventanas, J.; Estevez, M. Effect of the partial replacement of sodium chloride by other salts on the formation of volatile compounds during ripening of dry-cured ham. J. Agric. Food Chem. 2012, 60, 7607–7615. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, P.; Kruszewski, B.; Stachelska, M.A.; Szabłowska, E. Development of volatile profile of Kumpiak podlaski dry-cured ham during traditional ripening. Int. J. Food Sci. Technol. 2020, 55, 3630–3638. [Google Scholar] [CrossRef]
- Ben Braïek, O.; Smaoui, S. Chemistry, safety, and challenges of the use of organic acids and their derivative salts in meat preservation. J. Food Qual. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Said, T.M.; Elgasim, E.A.; Eltilib, H.H.; Bekhit, A.E.-D.A.; Al-Juhaimi, F.Y.; Mohamed Ahmed, I.A. Antioxidant and antimicrobial potentials of Damsissa (Ambrosia maritima) leaf powder extract added to minced beef during cold storage. CyTA-J. Food 2018, 16, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Djenane, D.; Gómez, D.; Yangüela, J.; Roncalés, P.; Ariño, A. Olive leaves extract from algerian oleaster (Olea europaea var. Sylvestris) on microbiological safety and shelf-life stability of raw halal minced beef during display. Foods 2018, 8, 10. [Google Scholar] [PubMed] [Green Version]
- Hafez, S.; Othman, S.; Ibrahim, H.; Seida, A.; Ayoub, N. Chemical Constituents and Biological Activities of Cassia Genus. Arch. Pharm. Sci. Ain Shams Univ. 2019, 3, 195–227. [Google Scholar] [CrossRef]
- Nekkaa, A.; Benaissa, A.; Mutelet, F.; Canabady-Rochelle, L. Rhamnus alaternus Plant: Extraction of Bioactive Fractions and Evaluation of Their Pharmacological and Phytochemical Properties. Antioxidants 2021, 10, 300. [Google Scholar] [CrossRef]
- Kittur, B.; Srinivas, Y.; Deshpande, S.R. Evaluation of leaf and stem extracts from Cassia glauca L. for antimicrobial activity. Int. J. Pure Appl. Zool. 2015, 3, 98–102. [Google Scholar]
- Gupta, V.K.; Pathak, A.; Singh, C.V.; Gahlot, M.; Pathak, D. Screening of Anti-Hyperglycaemic and Anti-Hyperlipidemic Activities of Leaves Extracts of Cassia glauca Lam. on Streptozotocin-Nicotinamide Induced NIDDM Rats. Indian J. Pharm. Educ. Res. 2021, 55, 1115–1124. [Google Scholar] [CrossRef]
- Ramya, K.; Kanimathi, P.; Radha, A. GC–MS analysis and antimicrobial activity of various solvent extracts from Simarouba glauca leaves. J. Pharmacogn. Phytochem. 2019, 8, 166–171. [Google Scholar]
- Sangeetha, A.; Kumar, P.S.; Balakrishnan, S.; Manimaran, K.; Dhanalakshmi, M.; Sivakumar, T. In-vitro antimicrobial activity of Madhuca indica and Cassia fistula leaves against food-borne pathogens. J. Pharmacogn. Phytochem. 2020, 9, 587–591. [Google Scholar]
- Pertiwi, D.; Hafiz, I.; Salma, R. Antibacterial Activity of Gel of Ethanol Extract of Papaya Leaves (Carica papaya L.) againts Propionobacterium acnes. Indones. J. Pharm. Clin. Res. 2019, 2, 01–06. [Google Scholar] [CrossRef] [Green Version]
- Shaltout, F.A.; Koura, H.A. Impact of some essential oils on the quality aspect and shelf life of meat. Benha Vet. Med. J. 2017, 33, 351–364. [Google Scholar] [CrossRef]
- Abdeldaiem, M.H.; Ali, H.G.M.; Foda, M.I. Improving the quality of minced beef by using mulberry leaves extract. J. Food Meas. Charact. 2017, 11, 1681–1689. [Google Scholar] [CrossRef]
- Duman, M.; Kuzgun, N.K. Quality changes of nugget prepared from fresh and smoked rainbow trout during chilled storage. Br. Food J. 2018, 120, 2080–2087. [Google Scholar] [CrossRef]
- Pearson, D. Chemical Analysis of Foods; Publishing Co. Churchill Living Stones: Edinburgh, UK; London, UK, 1984. [Google Scholar]
- Hassanien, M.; El-Khateib, T.; Hassan, M.; Abd-El-Malek, A.M. Changes in camel and cattle meat during chilling preservation. Assiut Vet. Med. J. 2022, 68, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.; Hossain, M.; Rahman, S.; Amin, M.; Oh, D.-H. Evaluation of physicochemical deterioration and lipid oxidation of beef muscle affected by freeze-thaw cycles. Korean J. Food Sci. Anim. Resour. 2015, 35, 772. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Abdel-Shafi, S.; Al-Mohammadi, A.-R.; Kamal, N.; Enan, G.; Sitohy, M. Catfish glycoprotein, a highly powerful safe preservative of minced beef stored at 4 C for 15 days. Foods 2020, 9, 1115. [Google Scholar] [CrossRef]
- Mooijman, K.A.; Pielaat, A.; Kuijpers, A.F. Validation of EN ISO 6579-1-Microbiology of the food chain-Horizontal method for the detection, enumeration and serotyping of Salmonella-Part 1 detection of Salmonella spp. Int. J. Food Microbiol. 2019, 288, 3–12. [Google Scholar] [CrossRef]
- Razavizadeh, S.; Alencikiene, G.; Salaseviciene, A.; Vaiciulyte-Funk, L.; Ertbjerg, P.; Zabulione, A. Impact of fermentation of okara on physicochemical, techno-functional, and sensory properties of meat analogues. Eur. Food Res. Technol. 2021, 247, 2379–2389. [Google Scholar] [CrossRef]
- Khattab, M.S.; Tawab, A.E.; Ahmed, M.; Saudi, E.M.; Awad, A.A.; Saad, S.A. Fatty Acids Profile, and∆ 9-Desaturase Index of Milk from Barki Ewes Fed Diets Supplemented with Spirulina Platensis or Fish Oil. Egypt. J. Chem. 2022, 65, 1–2. [Google Scholar] [CrossRef]
- Tang, H.; Darwish, W.S.; El-Ghareeb, W.R.; Al-Humam, N.A.; Chen, L.; Zhong, R.M.; Xiao, Z.J.; Ma, J.K. Microbial quality and formation of biogenic amines in the meat and edible offal of Camelus dromedaries with a protection trial using gingerol and nisin. Food Sci. Nutr. 2020, 8, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Rashed, K. Phytochemical and biological activities of ephedra alata: A review. Int. J. Sci. Invent. Today 2021, 10, 175–178. [Google Scholar]
- Butt, A.; Ali, J.S.; Sajjad, A.; Naz, S.; Zia, M. Biogenic synthesis of cerium oxide nanoparticles using petals of Cassia glauca and evaluation of antimicrobial, enzyme inhibition, antioxidant, and nanozyme activities. Biochem. Syst. Ecol. 2022, 104, 104462. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef] [Green Version]
- Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Green alternatives to nitrates and nitrites in meat-based products–A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dave, H.; Ledwani, L. A review on anthraquinones isolated from Cassia species and their applications. Indian J. Nat. Prod. Resour. 2012, 3, 291–319. [Google Scholar]
- Rahman, M.; Alam, M.; Monir, M.; Rahman, S. Effect of Moringa oleifera leaf extract and synthetic antioxidant on quality and shelf-life of goat meat nuggets at frozen storage. Int. J. Food Res. 2020, 7, 34–45. [Google Scholar]
- Hawashin, M.D.; Al-Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Babiker, E.E. Physicochemical, microbiological and sensory evaluation of beef patties incorporated with destoned olive cake powder. Meat Sci. 2016, 122, 32–39. [Google Scholar] [CrossRef]
- Li, Y.; Tang, X.; Shen, Z.; Dong, J. Prediction of total volatile basic nitrogen (TVB-N) content of chilled beef for freshness evaluation by using viscoelasticity based on airflow and laser technique. Food Chem. 2019, 287, 126–132. [Google Scholar] [CrossRef]
- Hassan, M.A.; Amin, R. Assessment of chemical quality of local frozen cattle’s liver. Benha Vet. Med. J. 2020, 38, 97–100. [Google Scholar]
- Tometri, S.S.; Ahmady, M.; Ariaii, P.; Soltani, M.S. Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. J. Food Meas. Charact. 2020, 14, 3333–3344. [Google Scholar] [CrossRef]
- El-hashash, M.; Abdel-Gawad, M.M.; El-Sayed, M.M.; Sabry, W.A.; Abdel-Hameed, E.-S.S.; Abdel-Lateef, E.E.-S. Antioxidant properties of methanolic extracts of the leaves of seven Egyptian Cassia species. Acta Pharm. 2010, 60, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, Y. Phytochemical and in vitro anticancer activity of Cassia glauca leaves extract. Int. J. Green Pharm. (IJGP) 2019, 13, 354. [Google Scholar]
- Mojaddar Langroodi, A.; Nematollahi, A.; Sayadi, M. Chitosan coating incorporated with grape seed extract and Origanum vulgare essential oil: An active packaging for turkey meat preservation. J. Food Meas. Charact. 2021, 15, 2790–2804. [Google Scholar] [CrossRef]
- Hassan, M.; Amin, R.; Aboelroos, N. Shiga toxins Producing E. coli in Meat Products by Multiplex PCR. Benha Vet. Med. J. 2020, 39, 79–83. [Google Scholar] [CrossRef]
- Salem, A.; Sabike, I.; Sharaf, E.; Hashhash, A. Assessment of hygienic and nutritive quality of retailed minced meat in Egypt. Benha Vet. Med. J. 2019, 36, 393–402. [Google Scholar] [CrossRef]
- Fatima, O.; Seher, N.; Mushtaq, Z. Partial purification of bioactive fractions from cassia glauca lam leaves. JAPS J. Anim. Plant Sci. 2022, 32, 589–595. [Google Scholar]
- Córdoba-Calderón, O.; Redondo-Solano, M.; Castro-Arias, E.; Arias-EchandI, M.L. Arcobacter isolation from minced beef samples in Costa Rica. J. Food Prot. 2017, 80, 775–778. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, A.; Sanghi, A.; Chandra, R.; Arora, S. Individual and combined effects of leaves and flowers extracts of Cassia glauca on membrane stabilization, antimicrobial and antioxidant activities. Int. J. Res. Pharm. Sci. 2017, 8, 6. [Google Scholar]
- Kittur, N.; Dharshini, P.M.P. Review of Key Management Technique for Wireless Body Area Networks. Int. Res. J. Eng. Technol. 2015, 2, 83–86. [Google Scholar]
- Gutiérrez-Venegas, G.; Gómez-Mora, J.A.; Meraz-Rodríguez, M.A.; Flores-Sánchez, M.A.; Ortiz-Miranda, L.F. Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon 2019, 5, e03013. [Google Scholar] [CrossRef]
Sensory Attributes Storage (Days) | Cassia Glauca Leaf Extract Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
Appearance | ||||
0 day | 9.0 ± 0.0 Aa | 9.0 ± 0.0 Aa | 8.7 ± 0.6 Aa | 8.7 ± 0.6 Aa |
3 day | 9.0 ± 0.0 Aa | 9.0 ± 0.0 Aa | 8.7 ± 0.6 Aa | 8.7 ± 0.6 Aa |
6 day | 4.3 ± 0.6 Ba | 7.3 ± 0.6 Bb | 7.7 ± 0.6 Ab | 8.0 ± 0.0 Ab |
9 day | Decomposed | 5.3 ± 1.2 Ca | 6.7 ± 0.6 Aa | 6.7 ± 0.6 Ba |
12 day | Decomposed | Decomposed | 4.3 ± 0.6 Ba | 5.7 ± 0.6 Cb |
15 day | Decomposed | Decomposed | Decomposed | 4.7 ± 0.6 D |
Smell | ||||
0 day | 9.0 ± 0.0 Aa | 8.7 ± 0.6 Aa | 8.3 ± 0.6 Aa | 8.0 ± 0.0 Aa |
3 day | 8.0 ± 1.0 Aa | 8.7 ± 0.6 Aa | 8.0 ± 0.0 Aa | 7.7 ± 0.6 Aa |
6 day | 5.0 ± 1.0 Ba | 6.7 ± 0.6 Bb | 7.3 ± 0.6 Ab | 7.7 ± 0.6 Ab |
9 day | Decomposed | 4.3 ± 0.6 Ca | 6.3 ± 0.6 Bb | 7.0 ± 0.0 Bb |
12 day | Decomposed | Decomposed | 4.0 ± 1.0 Ca | 5.3 ± 0.6 Ca |
15 day | Decomposed | Decomposed | Decomposed | 3.7 ± 0.6 D |
Texture | ||||
0 day | 9.0 ± 0.0 Aa | 9.0 ± 0.0 Aa | 9.0 ± 0.0 Aa | 9.0 ± 0.0 Aa |
3 day | 5.7 ± 0.6 Ba | 8.7 ± 0.6 Ab | 9.0 ± 0.0 Ab | 9.0 ± 0.0 Ab |
6 day | 4.3 ± 0.6 Ca | 4.7 ± 0.6 Ba | 8.0 ± 0.0 Bb | 8.3 ± 0.6 Ab |
9 day | Decomposed | 3.7 ± 0.6 Ca | 5.7 ± 0.6 Cb | 7.7 ± 0.6 Bc |
12 day | Decomposed | Decomposed | 3.7 ± 0.6 Da | 5.3 ± 0.6 Cb |
15 day | Decomposed | Decomposed | Decomposed | 3.7 ± 0.6 D |
TASTE | ||||
0 day | 9.0 ± 0.0 Aa | 9.0 ± 0.0 Aa | 9.0 ± 0.0 Aa | 8.3 ± 0.6 Ab |
3 day | 7.3 ± 0.6 Ba | 8.7 ± 0.6 Ab | 8.3 ± 0.6 Bb | 8.0 ± 0.0 Ab |
6 day | 5.7 ± 0.6 Ca | 7.0 ± 0.0 Bb | 8.0 ± 0.0 Bc | 8.0 ± 0.0 Ac |
9 day | Decomposed | 4.7 ± 0.6 Ca | 6.3 ± 0.6 Cb | 7.3 ± 0.6 Bb |
12 day | Decomposed | Decomposed | 4.0 ± 0.0 Da | 5.3 ± 0.6 Cb |
15 day | Decomposed | Decomposed | Decomposed | 3.3 ± 0.6 D |
Overall acceptability | ||||
0 day | 9.0 ± 0.0 Aa | 9.0 ± 0.0 Aa | 8.3 ± 0.6 Aa | 8.3 ± 0.6 Aa |
3 day | 6.3 ± 0.6 Ba | 6.7 ± 0.6 Ba | 7.7 ± 0.6 Ab | 8.0 ± 0.0 Aa |
6 day | 4.0 ± 1.0 Ca | 5.3 ± 0.6 Ca | 6.3 ± 0.6 Bb | 7.3 ± 0.6 Bb |
9 day | Decomposed | 3.7 ± 0.6 Da | 4.7 ± 0.6 Ca | 6.3 ± 0.6 Cb |
12 day | Decomposed | Decomposed | 3.3 ± 0.6 Da | 4.7 ± 0.6 Db |
15 day | Decomposed | Decomposed | Decomposed | 3.7 ± 0.6 E |
Storage Period | Cassia Glauca Leaf Extract Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 5.75 ± 0.30 Aa | 5.73 ± 0.06 Aa | 5.72 ± 0.06 Aa | 5.71 ± 0.06 Aa |
3 day | 6.30 ± 0.08 Ba | 5.87 ± 0.08 Ab | 5.82 ± 0.07 Ab | 5.77 ± 0.05 Ab |
6 day | 6.79 ± 0.13 Ca | 6.10 ± 0.13 Bb | 5.98 ± 0.08 Ab | 5.84 ± 0.06 Ab |
9 day | Decomposed | 6.47 ± 0.28 Ca | 6.28 ± 0.18 Bb | 6.08 ± 0.14 Bb |
12 day | Decomposed | Decomposed | 6.57 ± 0.28 Ca | 6.32 ± 0.15 Cb |
15 day | Decomposed | Decomposed | Decomposed | 6.47 ± 0.13 C |
Storage Period | Cassia Glauca Leaf Extract Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 2.96 ± 0.18 Aa | 2.89 ± 0.17 Aa | 2.85 ± 0.16 Aa | 2.79 ± 0.17 Aa |
3 day | 13.31 ± 0.48 Ba | 6.21 ± 0.33 Bb | 5.87 ± 0.25 Bb | 5.72 ± 0.26 Bb |
6 day | 21.92 ± 1.24 Ca | 10.96 ± 0.72 Cb | 8.89 ± 0.38 Cc | 8.30 ± 0.57 Cc |
9 day | Decomposed | 17.41 ± 0.90 Da | 14.77 ± 0.74 Db | 13.06 ± 0.86 Dc |
12 day | Decomposed | Decomposed | 19.96 ± 1.10 Ea | 17.22 ± 0.92 Eb |
15 day | Decomposed | Decomposed | Decomposed | 20.07 ± 0.61 F |
Storage Period | Cassia Glauca Leaf Extract Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 0.07 ± 0.02 Aa | 0.07 ± 0.01 Aa | 0.06 ± 0.00 Aa | 0.06 ± 0.01 Aa |
3 day | 0.53 ± 0.08 Ba | 0.27 ± 0.03 Bb | 0.22 ± 0.03 Bb | 0.17 ± 0.02 Bb |
6 day | 1.07 ± 0.13 Ca | 0.45 ± 0.07 Cb | 0.38 ± 0.04 Cb | 0.27 ± 0.07 Bb |
9 day | Decomposed | 0.78 ± 0.06 Da | 0.69 ± 0.07 Da | 0.55 ± 0.08 Cb |
12 day | Decomposed | Decomposed | 0.87 ± 0.09 Ea | 0.75 ± 0.09 Da |
15 day | Decomposed | Decomposed | Decomposed | 0.88 ± 0.06 E |
Storage Period | Cassia Glauca Leaf Extracts Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 0.11 ± 0.02 Aa | 0.10 ± 0.01 Aa | 0.09 ± 0.01 Aa | 0.09 ± 0.02 Aa |
3 day | 0.60 ± 0.08 Ba | 0.34 ± 0.03 Bb | 0.29 ± 0.04 Bb | 0.23 ± 0.04 Bb |
6 day | 1.18 ± 0.13 Ca | 0.54 ± 0.07 Cb | 0.45 ± 0.05 Cb | 0.36 ± 0.07 Cb |
9 day | Decomposed | 0.87 ± 0.06 Da | 0.80 ± 0.05 Da | 0.63 ± 0.07 Db |
12 day | Decomposed | Decomposed | 0.97 ± 0.09 Ea | 0.83 ± 0.08 Ea |
15 day | Decomposed | Decomposed | Decomposed | 0.99 ± 0.07 F |
Storage Period | Cassia Glauca Leaf Extracts Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 5.70 ± 0.03 Aa | 5.66 ± 0.03 Aa | 5.63 ± 0.05 Aa | 5.61 ± 0.02 Aa |
3 day | 6.00 ± 0.02 Ba | 5.90 ± 0.01 Bb | 5.78 ± 0.04 Bc | 5.74 ± 0.04 Bc |
6 day | 6.45 ± 0.01 Ca | 6.00 ± 0.01 Cb | 5.97 ± 0.03 Cc | 5.88 ± 0.04 Cd |
9 day | Decomposed | 6.46 ± 0.02 Da | 6.02 ± 0.03 Db | 6.00 ± 0.04 Dc |
12 day | Decomposed | Decomposed | 6.47 ± 0.00 Ea | 6.04 ± 0.05 Eb |
15 day | Decomposed | Decomposed | Decomposed | 6.44 ± 0.03 F |
Storage Period | Cassia Glauca Leaf Extract Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 5.54 ± 0.02 Aa | 5.51 ± 0.02 Aa | 5.50 ± 0.03 Aa | 5.49 ± 0.01 Aa |
3 day | 6.21 ± 0.03 Ba | 5.78 ± 0.03 Bb | 5.69 ± 0.02 Bc | 5.61 ± 0.03 Bd |
6 day | 6.48 ± 0.00 Ca | 6.21 ± 0.01 Cb | 5.95 ± 0.01 Cc | 5.89 ± 0.01 Cd |
9 day | Decomposed | 6.48 ± 0.00 Da | 6.23 ± 0.01 Db | 6.00 ± 0.01 Dc |
12 day | Decomposed | Decomposed | 6.47 ± 0.00 Ea | 6.25 ± 0.01 Eb |
15 day | Decomposed | Decomposed | Decomposed | 6.48 ± 0.00 F |
Storage Period | Cassia Glauca Leaf Extracts Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 3.51 ± 0.01 Aa | 3.50 ± 0.02 Aa | 3.49 ± 0.02 Aa | 3.48 ± 0.01 Aa |
3 day | 4.03 ± 0.02 Ba | 3.90 ± 0.02 Bb | 3.73 ± 0.04 Bc | 3.70 ± 0.01 Bc |
6 day | 4.48 ± 0.00 Ca | 4.08 ± 0.01 Cb | 3.94 ± 0.01 Cc | 3.90 ± 0.01 Cd |
9 day | Decomposed | 4.48 ± 0.00 Da | 4.09 ± 0.02 Db | 3.97 ± 0.02 Dc |
12 day | Decomposed | Decomposed | 4.48 ± 0.00 Ea | 4.11 ± 0.01 Eb |
15 day | Decomposed | Decomposed | Decomposed | 4.48 ± 0.00 F |
Storage Period | Cassia Glauca Leaf Extract Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 3.52 ± 0.02 Aa | 3.50 ± 0.03 Aa | 3.50 ± 0.02 Aa | 3.48 ± 0.01 Aa |
3 day | 3.67 ± 0.03 Ba | 3.63 ± 0.04 Ba | 3.58 ± 0.03 Bb | 3.57 ± 0.02 Bb |
6 day | 4.27 ± 0.01 Ca | 3.95 ± 0.02 Cb | 3.84 ± 0.02 Cc | 3.73 ± 0.04 Cd |
9 day | Decomposed | 4.28 ± 0.01 Da | 4.20 ± 0.01 Db | 4.03 ± 0.02 Dc |
12 day | Decomposed | Decomposed | 4.31 ± 0.01 Ea | 4.26 ± 0.01 Eb |
15 day | Decomposed | Decomposed | Decomposed | 4.45 ± 0.00 F |
Storage Period | Cassia Glauca Leaf Extract Concentrations (%) | |||
---|---|---|---|---|
Control | 0.25% | 0.50% | 1.0% | |
0 day | 4.55 ± 0.02 Aa | 4.52 ± 0.02 Aa | 4.52 ± 0.02 Aa | 4.50 ± 0.03 Aa |
3 day | 5.06 ± 0.04 Ba | 4.91 ± 0.02 Bb | 4.80 ± 0.03 Bc | 4.76 ± 0.02 Bc |
6 day | 5.37 ± 0.01 Ca | 5.12 ± 0.02 Cb | 4.96 ± 0.02 Cc | 4.90 ± 0.02 Cd |
9 day | Decomposed | 5.41 ± 0.02 Da | 5.18 ± 0.01 Db | 5.00 ± 0.01 Dc |
12 day | Decomposed | Decomposed | 5.41 ± 0.02 Ea | 5.23 ± 0.02 Eb |
15 day | Decomposed | Decomposed | Decomposed | 5.47 ± 0.01 F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghoneim, S.; Saleh, E.; Hussein, M.; Sadek, K.; Shukry, M.; Ghamry, H.I.; Fericean, L.M.; Ali, E. Improving the Shelf Life and Quality of Minced Beef by Cassia Glauca Leaf Extracts during Cold Storage. Processes 2023, 11, 240. https://doi.org/10.3390/pr11010240
Ghoneim S, Saleh E, Hussein M, Sadek K, Shukry M, Ghamry HI, Fericean LM, Ali E. Improving the Shelf Life and Quality of Minced Beef by Cassia Glauca Leaf Extracts during Cold Storage. Processes. 2023; 11(1):240. https://doi.org/10.3390/pr11010240
Chicago/Turabian StyleGhoneim, Shaymaa, Ebeed Saleh, Mohamed Hussein, Kadry Sadek, Mustafa Shukry, Heba I. Ghamry, Liana Mihaela Fericean, and Eman Ali. 2023. "Improving the Shelf Life and Quality of Minced Beef by Cassia Glauca Leaf Extracts during Cold Storage" Processes 11, no. 1: 240. https://doi.org/10.3390/pr11010240
APA StyleGhoneim, S., Saleh, E., Hussein, M., Sadek, K., Shukry, M., Ghamry, H. I., Fericean, L. M., & Ali, E. (2023). Improving the Shelf Life and Quality of Minced Beef by Cassia Glauca Leaf Extracts during Cold Storage. Processes, 11(1), 240. https://doi.org/10.3390/pr11010240