Applications of Fractional Partial Differential Equations for MHD Casson Fluid Flow with Innovative Ternary Nanoparticles
Abstract
:1. Introduction
2. Mathematical Formulation
3. Preliminaries of Fractional Calculus
4. Solution of the Problem Based on Generalized Law with Ternary Nanoparticles
4.1. Computation of Temperature Field
4.2. Computation of Concentration Field
4.3. Computation of Velocity Field
5. Graphical Outcomes
6. Discussion
7. Conclusions
- The model based on ternary is stronger approach than the hybrid and mono nanoparticle.
- Enhancement in temperature and velocity can be achieved for larger values of fractional parameters.
- Model based on generalized laws are reliable way for fractional modeling and can be accurately fitted any experimental data.
- Maximum temperature is achievable for ternary nanoparticles instead of hybrid and mono nanoparticles, respectively.
8. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Explanation | Unit |
Density | kg/m | |
Shear stress | Pascal (Pa) N/s | |
Specific heat capacity | JKkg | |
Fluid viscosity | kg/ms | |
Casson parameter | no unit | |
Thermal Grashof number | no unit | |
Pr | Prandtl number | no unit |
Mass Grashof number | no unit | |
Schimdt number | no unit | |
g | Gravitational force | m/s |
Volumetric expansion | mol·m | |
D | mass diffusion coefficient | m |
Thermal expansion | K | |
Fractional derivative parameter | no unit | |
Fractional derivative parameter | no unit | |
Fractional derivative parameter | no unit | |
Electrical conductivity | S·m | |
Ambient temperature | K | |
Wall temperature | K | |
Wall concentration | mol·m | |
Ambient concentration | mol·m | |
q | Frequency | |
Fluid kinematic viscosity | m·s | |
Dimensionless magnetic parameter | no unit | |
A | Accelration | m/s |
References
- Asjad, M.I. Fractional mechanism with power law (singular) and exponential (non-singular) kernels and its applications in bio heat transfer model. Int. J. Heat Technol. 2019, 37, 846–852. [Google Scholar] [CrossRef]
- Aleem, M.; Asjad, M.I.; Shaheen, A.; Khan, I. MHD Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating. Chaos Solitons Fractals 2020, 130, 109437. [Google Scholar] [CrossRef]
- Imran, M.A.; Shah, N.A.; Khan, I.; Aleem, M. Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating. Neural Comp. Appl. 2018, 30, 1589–1599. [Google Scholar] [CrossRef]
- Asjad, M.I.; Shah, N.A.; Aleem, M.; Khan, I. Heat transfer analysis of fractional second-grade fluid subject to Newtonian heating with Caputo and Caputo-Fabrizio fractional derivatives: A comparison. Eur. Physical J. Plus 2017, 132, 1–19. [Google Scholar] [CrossRef]
- Tahir, M.; Imran, M.A.; Raza, N.; Abdullah, M.; Aleem, M. Wall slip and non-integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo-Fabrizio derivatives. Results Phys. 2017, 7, 1887–1898. [Google Scholar] [CrossRef]
- Singh, J.; Hristov, J.Y.; Hammouch, Z. (Eds.) New Trends in Fractional Differential Equations with Real-World Applications in Physics; Frontiers Media SA: Lausanne, Switzerland, 2020. [Google Scholar]
- Owolabi, K.M.; Atangana, A. Numerical Methods for Fractional Differentiation; Springer: Singapore, 2019; p. 54. [Google Scholar]
- Trujillo, J.J.; Scalas, E.; Diethelm, K.; Baleanu, D. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2016; Volume 5. [Google Scholar]
- Hayday, A.A.; Bowlus, D.A.; McGraw, R.A. Free convection from a vertical flat plate with step discontinuities in surface temperature. J. Heat Transfer. 1967, 89, 244–249. [Google Scholar] [CrossRef]
- Schetz, J.A. On the approximate solution of viscous-flow problems. J. Appl. Mech. 1963, 30, 263–268. [Google Scholar] [CrossRef]
- Malhotra, C.P.; Mahajan, R.L.; Sampath, W.S.; Barth, K.L.; Enzenroth, R.A. Control of temperature uniformity during the manufacture of stable thin-film photovoltaic devices. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–19 November 2004; Volume 4711, pp. 547–555. [Google Scholar]
- McIntosh, R.; Waldram, S. Obtaining more, and better, information from simple ramped temperature screening tests. J. Therm. Anal. Calorim. 2003, 73, 35–52. [Google Scholar] [CrossRef]
- Das, S.; Jana, M.; Jana, R.N. Radiation effect on natural convection near a vertical plate embedded in porous medium with ramped wall temperature. Open J. Fluid Dyn. 2011, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nandkeolyar, R.; Das, M.; Sibanda, P. Exact solutions of unsteady MHD free convection in a heat absorbing fluid flow past a flat plate with ramped wall temperature. Bound. Value Probl. 2013, 2013, 1–16. [Google Scholar] [CrossRef]
- Seth, G.S.; Hussain, S.M.; Sarkar, S. Hydromagnetic natural convection flow with heat and mass transfer of a chemically reacting and heat absorbing fluid past an accelerated moving vertical plate with ramped temperature and ramped surface concentration through a porous medium. J. Egypt. Math. Soc. 2015, 23, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Seth, G.S.; Sharma, R.; Sarkar, S. Natural convection heat and mass transfer flow with Hall current, rotation, radiation and heat absorption past an accelerated moving vertical plate with ramped temperature. J. Appl. Fluid Mech. 2014, 8, 7–20. [Google Scholar]
- Seth, G.S.; Sarkar, S.; Hussain, S.M.; Mahato, G.K. Effects of hall current and rotation on hydromagnetic natural convection flow with heat and mass transfer of a heat absorbing fluid past an impulsively moving vertical plate with ramped temperature. J. Appl. Fluid Mech. 2014, 8, 159–171. [Google Scholar]
- Seth, G.S.; Ansari, M.S.; Nandkeolyar, R. MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature. Heat Mass Transf. 2011, 47, 551–561. [Google Scholar] [CrossRef]
- Mohd Zin, N.A.; Khan, I.; Shafie, S. Influence of thermal radiation on unsteady MHD free convection flow of Jeffrey fluid over a vertical plate with ramped wall temperature. Math. Probl. Eng. 2016, 2016, 6257071. [Google Scholar] [CrossRef] [Green Version]
- Asif, M.; Ul Haq, S.; Islam, S.; Abdullah Alkanhal, T.; Khan, Z.A.; Khan, I.; Nisar, K.S. Unsteady flow of fractional fluid between two parallel walls with arbitrary wall shear stress using Caputo-Fabrizio derivative. Symmetry 2019, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- Polito, F.; Tomovski, Z. Some properties of Prabhakar-type fractional calculus operators. arXiv 2015, arXiv:1508.03224. [Google Scholar] [CrossRef]
- Elnaqeeb, T.; Shah, N.A.; Mirza, I.A. Natural convection flows of carbon nanotubes nanofluids with Prabhakar-like thermal transport. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Shah, N.A.; Fetecau, C.; Vieru, D. Natural convection flows of Prabhakar-like fractional Maxwell fluids with generalized thermal transport. J. Therm. Anal. Calorim. 2021, 143, 2245–2258. [Google Scholar] [CrossRef]
- Eshaghi, S.; Ghaziani, R.K.; Ansari, A. Stability and dynamics of neutral and integro-differential regularized Prabhakar fractional differential systems. Comput. Appl. Math. 2020, 39, 1–21. [Google Scholar] [CrossRef]
- Tanveer, M.; Ullah, S.; Shah, N.A. Thermal analysis of free convection flows of viscous carbon nanotubes nanofluids with generalized thermal transport: A Prabhakar fractional model. J. Therm. Anal. Calorim. 2021, 144, 2327–2336. [Google Scholar] [CrossRef]
- Alidousti, J. Stability region of fractional differential systems with Prabhakar derivative. J. Appl. Math. Comp. 2020, 62, 135–155. [Google Scholar] [CrossRef]
- Derakhshan, M. New numerical algorithm to solve variable—Order fractional integrodifferential equations in the sense of Hilfer Prabhakar derivative. In Abstract and Applied Analysis; Hindawi: London, UK, 2021; Volume 2021. [Google Scholar]
- Asjad, M.I.; Sarwar, N.; Hafeez, M.B.; Sumelka, W.; Muhammad, T. Advancement of non-newtonian fluid with hybrid nanoparticles in a convective channel and prabhakars fractional derivative—Analytical solution. Fractal Fract. 2021, 5, 99. [Google Scholar] [CrossRef]
- Chen, C.; Rehman, A.U.; Riaz, M.B.; Jarad, F.; Sun, X.E. Impact of Newtonian heating via Fourier and Ficks Laws on thermal transport of oldroyd-B fluid by using generalized Mittag-Leffler kernel. Symmetry 2022, 14, 766. [Google Scholar] [CrossRef]
- Wang, F.; Asjad, M.I.; Zahid, M.; Iqbal, A.; Ahmad, H.; Alsulami, M.D. Unsteady thermal transport flow of Casson nanofluids with generalized Mittag-Leffler kernel of Prabhakar’s type. J. Mater. Res. Technol. 2021, 14, 1292–1300. [Google Scholar] [CrossRef]
- Sene, N.; Srivastava, G. Generalized Mittag-Leffler input stability of the fractional differential equations. Symmetry 2019, 11, 608. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, S.; Ahmad, S.; Khan, M.N. Mixed convection flow of hybrid nanoparticle along a Riga surface with Thomson and Troian slip condition. J. Therm. Anal. Calorim. 2021, 143, 2099–2109. [Google Scholar] [CrossRef]
- Reddy, M.G.; Shehzad, S.A. Molybdenum disulfide and magnesium oxide nanoparticle performance on micropolar Cattaneo-Christov heat flux model. Appl. Math. Mech. 2021, 42, 541–552. [Google Scholar] [CrossRef]
- Jamei, M.; Pourrajab, R.; Ahmadianfar, I.; Noghrehabadi, A. Accurate prediction of thermal conductivity of ethylene glycol-based hybrid nanofluids using artificial intelligence techniques. Int. Commun. Heat Mass Transf. 2020, 116, 104624. [Google Scholar] [CrossRef]
- Xian, H.W.; Sidik, N.A.C.; Saidur, R. Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int. Commun. Heat Mass Transf. 2020, 110, 104389. [Google Scholar] [CrossRef]
- Arani, A.A.A.; Aberoumand, H. Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis. Powder Technol. 2021, 380, 152–163. [Google Scholar] [CrossRef]
- Roy, N.C.; Saha, L.K.; Sheikholeslami, M. Heat transfer of a hybrid nanofluid past a circular cylinder in the presence of thermal radiation and viscous dissipation. AIP Adv. 2020, 10, 095208. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Esmaeilzadeh, F.; Wang, X.P. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid. J. Therm. Anal. Calorim. 2019, 137, 879–901. [Google Scholar] [CrossRef]
- Sahoo, R.R.; Kumar, V. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. Int. Commun. Heat Mass Transfer 2020, 111, 104451. [Google Scholar] [CrossRef]
- Xia, X.; Chen, Y.; Yan, L. Averaging principle for a class of time-fractal-fractional stochastic differential equations. Fractal Fract. 2022, 6, 558. [Google Scholar] [CrossRef]
- Guechi, S.; Dhayal, R.; Debbouche, A.; Malik, M. Analysis and optimal control of ϕ-Hilfer fractional semilinear equations involving nonlocal impulsive conditions. Symmetry 2021, 13, 2084. [Google Scholar] [CrossRef]
- Manjunatha, S.; Puneeth, V.; Gireesha, B.J.; Chamkha, A. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. J. Appl. Comput. Mech. 2022, 8, 1279–1286. [Google Scholar]
- Nazir, U.; Sohail, M.; Hafeez, M.B.; Krawczuk, M. Significant production of thermal energy in partially ionized hyperbolic tangent material based on ternary hybrid nanomaterials. Energies 2021, 14, 6911. [Google Scholar] [CrossRef]
- Nasir, S.; Sirisubtawee, S.; Juntharee, P.; Berrouk, A.S.; Mukhtar, S.; Gul, T. Heat transport study of ternary hybrid nanofluid flow under magnetic dipole together with nonlinear thermal radiation. Appl. Nanosci. 2022, 12, 2777–2788. [Google Scholar] [CrossRef]
- Guedri, K.; Bashir, T.; Abbasi, A.; Farooq, W.; Khan, S.U.; Khan, M.I.; Jammel, M.; Galal, A.M. Hall effects and entropy generation applications for peristaltic flow of modified hybrid nanofluid with electroosmosis phenomenon. J. Indian Chem. Soc. 2022, 99, 100614. [Google Scholar] [CrossRef]
- Saqib, M.; Mohd Kasim, A.R.; Mohammad, N.F.; Chuan Ching, D.L.; Shafie, S. Application of fractional derivative without singular and local kernel to enhanced heat transfer in CNTs nanofluid over an inclined plate. Symmetry 2020, 1, 768. [Google Scholar] [CrossRef]
- Irandoost Shahrestani, M.; Maleki, A.; Safdari Shadloo, M.; Tlili, I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry 2020, 12, 120. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.A.; Reddy, Y.D.; Rao, V.S.; Goud, B.S. Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate. Case Stud. Therm. Eng. 2021, 24, 100826. [Google Scholar] [CrossRef]
- Reyaz, R.; Mohamad, A.Q.; Lim, Y.J.; Saqib, M.; Shafie, S. Analytical solution for impact of Caputo-Fabrizio fractional derivative on MHD casson fluid with thermal radiation and chemical reaction effects. Fractal Fract. 2022, 6, 38. [Google Scholar] [CrossRef]
- Sarwar, N.; Jahangir, S.; Asjad, M.I.; Eldin, S.M. Application of Ternary Nanoparticles in the Heat Transfer of an MHD Non-Newtonian Fluid Flow. Micromachines 2022, 13, 2149. [Google Scholar] [CrossRef]
- Sarwar, N.; Asjad, M.A.; Sitthiwirattham, T.; Patanarapeelert, N.; Muhammad, T. A Prabhakar fractional approach for the convection flow of casson fluid across an oscillating surface based on the generalized Fourier law. Symmetry 2021, 13, 2039. [Google Scholar] [CrossRef]
- Maiti, S.; Shaw, S.; Shit, G.C. Caputo-Fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation. Phys. A Stat. Mech. Its Appl. 2020, 540, 123149. [Google Scholar] [CrossRef]
- Hussanan, A.; Zuki Salleh, M.; Tahar, R.M.; Khan, I. Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating. PLoS ONE 2014, 9, e108763. [Google Scholar] [CrossRef]
Material | Base Fluid Kerosene Oil | Silver (Ag) | Copper (Cu) | Titanium Dioxide (TiO) |
---|---|---|---|---|
(kg /m) | 863 | 10,500 | 8993 | 4250 |
(J/kg.K) | 2048 | 235 | 385 | 686.20 |
k (W/m.K) | 0.1404 | 429 | 401 | 8.9538 |
(s/m) | ||||
(1/K) | 70 | 1.89 | 1.67 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asjad, M.I.; Karim, R.; Hussanan, A.; Iqbal, A.; Eldin, S.M. Applications of Fractional Partial Differential Equations for MHD Casson Fluid Flow with Innovative Ternary Nanoparticles. Processes 2023, 11, 218. https://doi.org/10.3390/pr11010218
Asjad MI, Karim R, Hussanan A, Iqbal A, Eldin SM. Applications of Fractional Partial Differential Equations for MHD Casson Fluid Flow with Innovative Ternary Nanoparticles. Processes. 2023; 11(1):218. https://doi.org/10.3390/pr11010218
Chicago/Turabian StyleAsjad, Muhammad Imran, Rizwan Karim, Abid Hussanan, Azhar Iqbal, and Sayed M. Eldin. 2023. "Applications of Fractional Partial Differential Equations for MHD Casson Fluid Flow with Innovative Ternary Nanoparticles" Processes 11, no. 1: 218. https://doi.org/10.3390/pr11010218