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Abstract: This study deals with the modeling issues of the transport problem with a fractional
operator. The fractional model with generalized Fourier’s law is discussed for Casson fluid flow over
a flat surface. The dimensionless governing model is solved with the Laplace transform method, and
the different comparisons are plotted from the obtained solutions. Other features of the problem have
been analyzed instead of the symmetric behavior of the properties for different values of the fractional
parameter. As a result, the ternary nanoparticles approach can be used to improve the fluid properties
better than hybrid and mono nanoparticles. Further, it is evident that the law-based fractional model
is more accurate and efficient in fitting any experimental data instead of an artificial replacement.

Keywords: Prabhakar fractional derivative; comparison; generalized laws; ternary nanoparticle;
hybrid nanoparticle; mono nanoparticle

1. Introduction

Fractional calculus theory has received more attention from scholars during the past
few decades in a number of disciplines. Indeed, it has been established that the usage of
fractional derivatives is quite advantageous in modifying many processes connected to ther-
mal transport, engineering sciences, circuit analysis, biotechnology, and signal processing.
Many further applications of heat and mass transfer and fluid dynamics can be found in
the references [1–5]. Typically, these models are expressed in terms of classic integer-order
partial differential equations (PDEs). Traditional PDEs, on the other hand, are incapable
of decoding the complicated behavior of physical flow parameters and memory effects.
The classical calculus is so named because it measures the immediate rate of change of the
output when the input level changes. As a result, it cannot incorporate the prior state of the
system, which is known as the memory effect. However, using fractional calculus (FC), the
rate of change is influenced by each point in the interval under consideration, allowing for
the incorporation of any system’s prior history or memory effects. Jagdev et al. [6], Kolade
and Atangana. [7], and Baleanu et al. [8] have all published books on fractional derivatives
that cover both the use of fractional derivatives and their operators.

Ordinary life problems typically have arbitrary boundary conditions. It is possible to
research scenarios in which the temperature of the wall varies in phases. Such topics are be-
ing researched diligently by researchers. Many engineering and industrial procedures rely
on the flow of heat in fluids, including nuclear operations, gas turbines, heating and cooling
processes, device design, and the management of high-tech thermal systems. Studies of the
flow of MHD nanoparticles with ramping concentration and temperature conditions in the
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literature are not currently investigated analytically in depth due to the difficulties of the
relationships. Hayday et al. [9], Schetz. [10], and Malhotra et al. [11] pioneered the notion
of ramping temperature. Ramping heat is most commonly used to vaporise cancer cells
during thermal treatment. Temperature spikes produced by natural sources are mitigated
by ramped conditions [12]. Das et al. [13] examined how step wise heating affected the
flow of an incompressible, optically thin fluid over a plate. According to ramping and
constant boundary conditions, Nandkeolyar et al. [14] examined and compared MHD
natural convection flow and different plate motions at uniform velocity, periodic accelera-
tion, and single acceleration. Mass and heat transfer on a vertical plate were explored by
Seth et al. [15–18] in the presence of increasing concentration and temperature, chemical
reaction, heat absorption, Darcy’s law, thermal radiation, porous material, and Hall current,
among other characteristics. Zin et al. [19] focused on the impact of ramping temperature,
Jeffrey Fluid Flow’s spontaneous convection, and the effects of heat radiation and magnetic
fields. Indian mathematician Tilak Raj Prabhakar, known as the creator of the Prabhakar
work, first suggested that the Mittag-Leffler function can be expanded to three parameters
in 1971. In order to choose pleasing numerical models that arrive at a fair compromise
between hypothetical and experimental results, Prabhakar administrators with defined
fractional coefficients may be a valuable tool [20,21]. Elnaqeeb et al. [22] investigated
Prabhakar-like heat transfer in a carbon nanotube nanoparticle with natural convection flow.
Shah et al.’s [23] investigation focused on the spontaneous convection streams and gen-
eralized thermal transport of Prabhakar-like fractional Maxwell fluids. Eshaghi et al. [24]
regularized the dynamics and stability of integrodifferential and neutral Prabhakar frac-
tional differential systems. The Prabhakar fractional model was employed to analyze the
thermal behavior of a viscous carbon nanotube nanoparticle in free convection flows with
generalized thermal transport, as termed by Tanveer et al. [25]. Alidousti [26] uses the
Prabhakar derivative and a stable field to research fractional differential classifications.
Derakhshan [27] established a novel numerical strategy for the solution of variable-order
fractional integrodifferential equations within the framework of Hilfer Prabhakar deriva-
tives. In a convection channel containing hybrid nanoparticles, Prabhakar fractional deriva-
tives of non-Newtonian fluid were investigated by Asjad et al. [28]. The Effect of Newtonian
Heating through Fourier and Fick’s Laws on the Thermal Transport of an Oldroyd-B Fluid
Using a Generalized Mittag-Leffler Kernel was covered by the authors of [29]. The un-
stable flow of thermal transfer Prabhakar types generalize Casson’s nanoparticle. The
Mittage-Leffler kernel was studied by Wang et al. [30]. The generalized Mittag-Leffler input
stability of the fractional differential equation was covered by Sene and Srivastava [31].
Recent investigations have found that nanoparticles are better at transferring heat than
regular fluids. The main applications of hybrid nanoparticles in real life are solar en-
ergy refrigeration and heating, ventilation, air conditioning, heat exchangers, heat pipes,
coolants in machining and manufacturing, ships, defense, nuclear system cooling, and the
automotive industry. Therefore, switching from regular fluids to nanoparticles makes sense.
Numerous researchers are interested in studying nanoparticles because of their enhanced
heat capacity. In addition to biology, electronics, transportation, and food, they have a big
influence on many different industrial domains. Nanoparticles are very tiny particles that
increase the conductivity of base fluids when they are introduced to them. The primary
components of nanoparticles are X2O3 (metal oxide), carbon tubes, N3 (nitride) , metal, and
CaC2 carbide [32]. Reddy et al. [33] evaluated the performance of MgO (magnesium oxide)
and MoS2 (molybdenum disulfide) nanoparticles in a micropolar thermal flux model. Due
to the extensive study of the aforementioned fluid, the thorough blending of conventional
fluids with two distinct types of nanomaterials has been named hybrid nanoparticles. The
thermal performance of hybrid nanoparticles is assessed using thermal conductivities, heat,
and molecular density concentrations, as well as nanoparticle thickness and size. The
thermal conductivity of hybrid nanoparticles may be determined using any method or for-
mula. Jamei et al. [34] reported the conjugate heat-transfer assessment for ethylene glycol
base hybrid nanoliquids. TiO2 and graphene nanoparticles were combined with purified
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water by Xian et al. [35] to produce powerful hybrid nanoliquids. Through the use of an
expanded surface, Arani and Aberoumand [36] looked into the numerical estimation of the
mobility of Ag + CuO/H2O hybrid nanoparticles at their stagnation point. The motion and
energy transmission of Cu+Al2O3/water hybrid nanoparticles through a spinning drum
were investigated by Roy et al. [37] for both assistive and resistive motions. The ternary
hybrid nanoparticle, a homogeneous blend of three different nanomaterial types with a
special base liquid, was very recently developed. The findings of a few research studies,
however, seem to be intriguing and instructive. The intricate processes of CuO, MgO, and
TiO2 movement in H2O were studied by Mousavi et al. [38].

In general, ternary hybrid nanoparticles resemble Newtonian liquids in their physical
characteristics. At higher temperatures, tri-hybrid nanoparticle concentrations are corre-
spondingly lower. The thermal performance of water-based ternary hybrid nanoparticles
with diverse shapes (spherical, cylindrical, and platelet) is high for radiator cooling. If
the radiator is built utilizing new ternary hybrid nanoparticle principles, the temperature
of the engines may be raised, extending the life of the machinery. The heat capacity of
the typical functional fluid may be increased by adding different kinds of nanoparticles.
The thermophysical characteristics of a ternary hybrid nanoparticle consisting of TiO2 and
Al2O3 in water at 35 to 50 ◦C were studied by Sahoo and Kumar [39]. Time-fractal-fractional
stochastic differential equations with the fractal fractional differential operator of Atangana
under the meaning of Caputo and with a kernel of the power law type were studied by
Xia et al. [40]. The analysis and optimal control of j-Hilfer fractional semilinear equations
involves non-local impulsive conditions [41]. Other researchers have expressed interest
in the related published work on ternary hybrids and on mono nanoparticles, including
Manjunatha et al. [42], Nazir et al. [43], Nasir et al. [44], Guedri et al. [45], Saqib et al. [46],
and Irandoost Shahrestani [47].

There was no study that used a fractional operator for an important class of nanopar-
ticles, such as mono nanoparticles, hybrid nanoparticles, and ternary nanoparticles, on a
single vertical plate. The researchers were driven to create a concept of existing nanopar-
ticles in order to boost heat transfer since there is a strong demand in the industry for
a cooling agent with improved heat transfer capabilities. To describe the channel flow
problem, the Prabhakar fractional derivative was used, which included mono, hybrid, and
ternary nanoparticles. In order to support the experimental results, a theoretical model
for ternary nanoparticles is presented in this study. As a result, the primary goal is to dis-
cover analytical solutions for energy and momentum using the Laplace transform method
and parametric analysis to illustrate the flexibility of the proposed model. The govern-
ing equations are obtained by introducing the dimensionless variables. The Prabhakar
fractional derivative operator was used to find the fractional model of nanofluids with
kerosene oil base fluid. Due to higher thermal conductivities, copper and aluminum oxide
are considered as the nanoparticles. We find the solutions of temperature and velocity
with the help of the Laplace transform. Using Mathcads software, analytical solutions are
designed graphically for fractional and flow parameters. The thermo-physical properties
of nanoparticles and the base fluid are given in Table 1.

Table 1. Thermophysical possessions of nanoparticles and base fluid [48].

Material Base Fluid
Kerosene Oil Silver (Ag) Copper (Cu) Titanium

Dioxide (TiO2)

ρ (kg /m3) 863 10,500 8993 4250
Cp (J/kg.K) 2048 235 385 686.20
k (W/m.K) 0.1404 429 401 8.9538

σ (s/m) 55× 10−6 3.6× 107 5.96× 107 1× 10−12

β× 10−5 (1/K) 70 1.89 1.67 0.90
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2. Mathematical Formulation

The significance of magnetic flux of nanoparticles discharge over an accelerating plate
having a non-linear thermal radiative flux as shown in Figure 1. The thermodynamic effect
of the fluid and the motion of the plate are both constant at a time t = 0. The temperature
distribution and the volume fraction far from the surface of the plate are T∞ and C∞, which
are referred to as the ambient temperature and volume fraction. As the time t ≥ 0, the
fluid of the plate begins to accelerate and the temperature of the wall rises. A permeating
homogeneous magnetic filled B0 is applied to the fluid parallel to the y axis. The effects
of an induced magnetic field in a fluid flow are ignored due to the tiny Reynolds number.
The effects of a magnetic field that is produced in a fluid flow are negligible due to the low
Reynolds number. When the Reynolds number is high, the effects of a magnetic field can
be significant. Fluid flow is constrained at y > 0 when the y coordinate is perpendicular
to the plate. The variables y and time t influence the velocity U, temperature T, and
concentration C.

Figure 1. Physical model of the problem [49].

The momentum equation is [49]

ρmn f
∂U
∂t

=
∂τ

∂y
− σmn f B2

0U + ρ(gβT)mn f (T − T∞) + ρ(gβc)mn f (C− C∞), (1)

The relation between shear stress and deformation with Prabhakar fractional derivative

τ = µmn f (1 +
1
β
)CDγ

α,β,a
∂U
∂y

.

The energy equation for heat flux:

(ρCp)mn f
∂T
∂t

= − ∂q
∂y

. (2)

The generalized Fourier’s Law [50] in the form of the Prabhakar fractional derivative:

q = −kC
mn f Dγ

α,β,a
∂T
∂y

, (3)
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The equation of diffusion:

∂C
∂t

= − ∂J
∂y

, (4)

The generalized Fick’s Law [51] for mass diffusibility:

J = −DC
mn f Dγ

α,β,a
∂C
∂y

. (5)

The initial and boundary conditions are

U(y, 0) = 0, U(∞, t) = 0, U(0, t) = At, as y −→ ∞, (6)

C(y, 0) = C∞, C(∞, t) = C∞, C(0, t) = Cw, as y −→ ∞, (7)

T(y, 0) = T∞, T(∞, t) = T∞, T(0, t) = Tw, as y −→ ∞. (8)

The relations of ternary nanoparticles are defined as:

µmn f =
µ f

(1− (φ1 + φ2 + φ3))2.5 , ρmn f = (1− (φ1 + φ2 + φ3))ρ f + φ1ρs1 + φ2ρs2 + φ3ρs3

(ρCp)mn f = (1− (φ1 + φ2 + φ3))(ρCp) f + φ1(ρCp)s1 + φ2(ρCp)s2 + φ3(ρCp)s3

(ρβT)mn f = (1− (φ1 + φ2 + φ3))(ρβT) f + φ1(ρβT)s1 + φ2(ρβT)s2 + φ3(ρβT)s3

khn f
kb f

=
φ1k1+φ2k2+φ3k3+2(φ1+φ2+φ3)k f +2(φ1+φ2+φ3)(φ1k1+φ2k2+φ3k3)−2(φ1+φ2+φ3)

2k f
φ1k1+φ2k2+φ3k3+2(φ1+φ2+φ3)k f−(φ1+φ2+φ3)(φ1k1+φ2k2+φ3k3)+(φ1+φ2+φ3)2k f

Introducing dimensionless parameters from Equation (9)

U∗ =
U

(νA)
1
3

, y∗ =
yA

1
3

ν
2
3

, C∗ =
C− C∞

Cw − C∞
, t∗ =

tA
2
3

ν
1
3

,

T∗ =
T − T∞

Tw − T∞
, q∗ =

q
q0

, J∗ =
J
J0

, τ∗ =
τ

τ0
(9)

The dimensionless governing model of Equations (1)–(5) without the asterisk notations

∂U
∂t

= a4
∂τ

∂y
− a5M2U + a6GrT + a7GmC, (10)

with non-dimensional shear stress

τ =
1
β0

C
Dγ

α,β,a
∂U
∂y

, (11)

the dimensionless energy equation

∂T
∂t

= − a1

Pr
∂q
∂y

, (12)

with non-dimensional Fourier’s law

q = −aC
2 Dγ

α,β,a
∂T
∂y

. (13)
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the dimensionless diffusion equation

∂C
∂t

= − 1
Sc

∂J
∂y

, (14)

with non-dimensional Fick’s law

J = −aC
3 Dγ

α,β,a
∂C
∂y

. (15)

where,

β0 =
β

1 + β
, Gr =

g(βT) f (Tw − T∞)

A
, Gm =

g(βc) f (Cw − C∞)

A
, M2 =

σf B2
0ν

1
3

ρA
2
3

(16)

Pr =
(µCp) f

k f
, Sc =

ν

D f
, a1 =

1[
1− (φ1 + φ2 + φ3) +

φ1(ρCp)s1+φ2(ρCp)s2+φ3(ρCp)s3
(ρCp) f

]
τ0 =

µmn f A
2
3

ν
1
3

, J0 = D f
(Cw − C∞)A

1
3

ν
2
3

, q0 = k f
(Tw − T∞)A

1
3

ν
2
3

, a2 =
kmn f

k f

a3 =
Dmn f

D f
, a4 =

1
a1(1− (φ1 + φ2 + φ3))2.5 , a5 =

σmn f

σf
, a6 =

a8

a1
, a7 =

a9

a1

a8 =

[
1− (φ1 + φ2 + φ3) +

φ1(ρβT)s1 + φ2(ρβT)s2 + φ3(ρβT)s3

(ρβT) f

]
,

a9 =

[
1− (φ1 + φ2 + φ3) +

φ1(ρβc)s1 + φ2(ρβc)s2 + φ3(ρβc)s3

(ρβc) f

]
.

Initial and boundary conditions that are dimensionless,

T(0, t) = 1, T(y, 0) = 0, T(∞, t) = 0, (17)

U(0, t) = t, U(y, 0) = 0, U(∞, t) = 0, (18)

C(0, t) = 1, C(y, 0) = 0, C(∞, t) = 0. (19)

3. Preliminaries of Fractional Calculus

Definition 1. The Prabhakar Kernal. For tεR,

eγ
α,β(a; t) = tβ−1Eγ

α,β(atα), α, β, γεC, Re(α) > 0, (20)

is called the Prabhakar kernel [52].

Definition 2. (The Prabhakar integral). For tε(0, b) and a function h ε L1(0, b)

Eγ
α,β,ah(t) = h(t) ∗ eγ

α,β(a; t) =
∫ t

0
h(τ)(t− τ)β−1Eγ

α,β(a(t− τ))αdτ (21)

is known as the Prabhakar integral. The LT (Laplace transform) of Equation (21) is given [52],

L{Eγ
α,β,ah(t)}(s) = L{h(t)} ∗ L{eγ

α,β(a; t)} = L{h(t)} saγ−β

(sα − a)γ
(22)
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Definition 3. The Prabhakar derivative.

Let g ε L1(0, b) and τ ε (0, b), then for m = [v].

(Dγ
α,ν,β,a+g) = (

dm

dtm (E−γ
α,n,−ν,β,a+g))(τ), (23)

where α, β, γ, ν are the elements of complex number C [52].

Definition 4. The regularized Prabhakar derivative.

Let 0 < β ≤ n, where n belongs to Z and h ε ACn(0, b). The regularized derivative is defined
as [52,53]

CDγ
α,β,ah(t) = h(n)(t)E−γ

α,n−β,a = hn(t) ∗ e−γ
α,n−β(a; t),

=
∫ t

0
hn(τ)(t− τ)n−β−1E−γ

α,n−β(a(t− τ)α)dτ, (24)

where h(n) represents the nth differential of h(t) and A Cn(0, b) represents the set of functions h(t)
with real values. The Laplace transform of the Equation (24) is given by

L(CDγ
α,β,ah(t)) = L{h(n)(t) ∗ e−γ

α,n−β},

= L{h(n)(t)}L{e−γ
α,n−β(a; t)},

= sβ−n(1− as−α)γL{h(n)(t)}. (25)

4. Solution of the Problem Based on Generalized Law with Ternary Nanoparticles

The Prabhakar fractional derivative and the Laplace transform approach are used to
calculate the temperature and concentration solution. Our main purpose is to determine
the velocity field for the Casson fluid.

4.1. Computation of Temperature Field

Using Laplace transform to solve Equations (12) and (13)

sT̄(y, s) = − a1

Pr
∂q̄(y, s)

∂y
, (26)

q̄(y, s) = −a2sβ(1− as−α)γ ∂T̄
∂y

. (27)

By introducing Equation (27) into (26)

∂2T̄
∂y2 =

Prs
a1a2sβ(1− as−α)γ

T̄(y, s). (28)

Using conditions from Equation (17),

T̄(y, s) =
1
s

e
−y

√
Prs

a1a2sβ(1−as−α)γ . (29)
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Equation (29) is complex in the exponential form, and it is difficult to find the inverse
Laplace transform by using direct formula from the table. Therefore, Equation (29) is
expressed in its equivalent series form as:

T̄(y, s) =
1
s
+

∞

∑
k=1

∞

∑
n=0

(−y)kPr
k
2 an

k!n!a
k
2
1 a

k
2
2 s1+nα+

βk
2 −

k
2

Γ( γk
2 + n)

Γ( γk
2 )

. (30)

Applying the inverse Laplace transform on Equation (30),

T(y, t) = 1 +
∞

∑
k=1

∞

∑
n=0

(−y)kPr
k
2 antnα+

βk
2 −

k
2

k!n!a
k
2
1 a

k
2
2 Γ(1 + nα + βk

2 −
k
2 )

Γ( γk
2 + n)

Γ( γk
2 )

. (31)

4.2. Computation of Concentration Field

In a similar fashion, the concentration solution can be obtained as in Section 4.1

C(y, t) = 1 +
∞

∑
k=1

∞

∑
n=0

(−y)kSc
k
2 ant(nα+

βk
2 −

k
2 )

k!n!a
k
2
3 Γ(1 + nα + βk

2 −
k
2 )

Γ( γk
2 + n)

Γ( γk
2 )

. (32)

4.3. Computation of Velocity Field

By using the Laplace transform to Equations (10), (11), and (18),

sŪ(y, s) = a4
∂τ̄(y, s)

∂y
− a5M2Ū(y, s) + a6GrT̄(y, s) + a7GmC̄(y, s), (33)

τ̄(y, s) =
1
β0

sβ(1− as−α)γ ∂Ū
∂y

. (34)

By introducing Equation (34) into (33), we have the following non-homogeneous
ordinary differential equation:

∂2Ū
∂y2 =

βos
a4sβ(1− as−α)γ

Ū(y, s) +
a5βo M2

a4sβ(1− as−α)γ
Ū(y, s) (35)

a6βoGr
a4sβ(1− as−α)γ

T̄(y, s)− a7βoGm
a4sβ(1− as−α)γ

C̄(y, s)

Ū(0, s) =
1
s2 , Ū(y, 0) = 0, Ū(∞, s) = 0, as y→ ∞. (36)

By using the results of temperature and concentration from Equations (29) and (32)
and the conditions from Equation (36) in Equation (35) we have the following result:

Ū(y, s) =
1
s2 e
−y

√
βo(a5 M2+s)

a4sβ(1−as−α)γ
+

a1a2βoa6Gr
s[βoa1a2((a5M2 + s))− a4Prs]

e
−y

√
βo(a5 M2+s)

a4sβ(1−as−α)γ (37)

+
a3βoa7Gm

s[a3βo(a5M2 + s)− a4sSc]
e
−y

√
βo(a5 M2+s)

a4sβ(1−as−α)γ − a1a2βoa6Gr
s[βoa1a2((a5M2 + s))− a4Prs]

e
−y

√
Prs

a1a2sβ(1−as−α)γ

− a3βoa7Gm
s[a3βo(a5M2 + s)− a4sSc]

e
−y

√
sSc

a3sβ(1−as−α)γ .
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Equation (37) is too lengthy and complicated so we are going to let

Ū(y, s) = Ā(y, s) + B̄(y, s) + C̄(y, s)− D̄(y, s)− Ē(y, s). (38)

where,

Ā(y, s) =
1
s2 e
−y

√
βo(a5 M2+s)

a4sβ(1−as−α)γ , (39)

B̄(y, s) =
a1a2βoa6Gr

s[βoa1a2((a5M2 + s))− a4Prs]
e
−y

√
βo(a5 M2+s)

a4sβ(1−as−α)γ , (40)

C̄(y, s) =
a3βoa7Gm

s[a3βo(a5M2 + s)− a4sSc]
e
−y

√
βo(a5 M2+s)

a4sβ(1−as−α)γ , (41)

D̄(y, s) =
a1a2βoa6Gr

s[βoa1a2((a5M2 + s))− a4Prs]
e
−y

√
Prs

a1a2sβ(1−as−α)γ , (42)

Ē(y, s) =
a3βoa7Gm

s[a3βo(a5M2 + s)− a4sSc]
e
−y

√
sSc

a3sβ(1−as−α)γ . (43)

The inverse Laplace transform cannot be calculated directly from the Laplace transform
table. As a result, Equations (39)–(43) are written as a series:

Ā(y, s) =
1
s2 +

∞

∑
k=1

∞

∑
n=0

∞

∑
m=0

(−y)kana5M2mβ
k
2
o

k!n!m!a
k
2
4 s(2+m+nα+

βk
2 −

k
2 )

Γ( k
2 + 1)Γ( γk

2 + n)

Γ( k
2 + 1−m)Γ( γk

2 )
, (44)

B̄(y, s) = a6Gr
∞

∑
p=0

∞

∑
r=0

∞

∑
u=0

(a4)
p(−1)r+uPrpa5M(2r+2u)

u!ap
1 ap

2 s(2+u+r)β
p
0

Γ(p + u)
Γ(p)

(45)

+a6Gr
∞

∑
k=1

∞

∑
n=0

∞

∑
m=0

∞

∑
p=0

∞

∑
r=0

∞

∑
u=0

(−y)kan(−1)r+u(βo)
k
2 Prpa5M(2m+2r+2u)

k!n!m!u!ap
1 ap

2 a
k
2−p
4 s(2+u+r+m+nα+

βk
2 −

k
2 )

Γ( k
2 + 1)Γ( γk

2 + n)Γ(p + u)

Γ( γk
2 + 1−m)Γ(p)Γ( γk

2 )
,

C̄(y, s) = a7Gm
∞

∑
l=0

∞

∑
p=0

∞

∑
j=0

aj
4(−1)l+pScja5M(2l+2p)

p!aj
3β

j
os(2+l+p)

Γ(j + p)
Γ(j)

(46)

+a7Gm
∞

∑
k=1

∞

∑
n=0

∞

∑
m=0

∞

∑
l=0

∞

∑
p=0

∞

∑
j=0

(−y)kan(−1)l+pScjβ
k
2−j
o a5M(2m+2p+2l)

k!n!m!p!a
k
2−j
4 aj

3s(2+l+p+m+nα+
βk
2 −

k
2 )

Γ( k
2 + 1)Γ( γk

2 + n)Γ(j + p)

Γ( γk
2 + 1−m)Γ(j)Γ( γk

2 )
,

D̄(y, s) = a6Gr
∞

∑
p=0

∞

∑
r=0

∞

∑
u=0

ap
4 (−1)r+uPrpa5M(2r+2u)

u!ap
1 ap

2 β
p
o s(2+r+u)

Γ(p + u)
Γ(p)

(47)
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+a6Gr
∞

∑
k=1

∞

∑
n=0

∞

∑
p=0

∞

∑
r=0

∞

∑
u=0

(−y)kan(−1)r+u(Pr)
k
2+pa

k
2
4 a5M(2r+2u)

k!n!u!(a1a2)
k
2+ps(2+nα+r+u+ βk

2 −
k
2 )

Γ( γk
2 + n)Γ(p + u)

Γ(p)Γ( γk
2 )

,

Ē(y, s) = a7Gm
∞

∑
l=0

∞

∑
p=0

∞

∑
j=0

aj
4(−1)l+p(Sc)ja5M(2l+2p)

p!aj
3β

j
os(2+l+p)

Γ(j + p)
Γ(j)

(48)

+a7Gm
∞

∑
k=1

∞

∑
n=0

∞

∑
l=0

∞

∑
p=0

∞

∑
j=0

(−y)kan(−1)l+pSc
k
2+jaj

4a5M(2l+2p)

k!n!p!a
k
2+j
3 β

j
os(2+l+p+nα+

βk
2 −

k
2 )

Γ( γk
2 + n)Γ(j + p)

Γ(j)Γ( γk
2 )

.

Taking the Inverse Laplace transform of Equations (44)–(48)

A(y, t) = t +
∞

∑
k=1

∞

∑
n=0

∞

∑
m=0

(−y)kana5M2mβ
k
2
o t(1+m+nα+

βk
2 −

k
2 )

k!n!m!a
k
2
4 Γ(2 + m + nα + βk

2 −
k
2 )

Γ( k
2 + 1)Γ( γk

2 + n)

Γ( k
2 + 1−m)Γ( γk

2 )
, (49)

B(y, t) = a6Gr
∞

∑
p=0

∞

∑
r=0

∞

∑
u=0

(a4)
p(−1)r+uPrpa5M(2r+2u)t(1+u+r)

u!bp
1 ap

2 β
p
0Γ(2 + u + r)

Γ(p + u)
Γ(p)

(50)

+a6Gr
∞

∑
k=1

∞

∑
n=0

∞

∑
m=0

∞

∑
p=0

∞

∑
r=0

∞

∑
u=0

(−y)kan(−1)r+u(βo)
k
2 Prpa5M(2m+2r+2u)t(1+u+r+m+nα+

βk
2 −

k
2 )

k!n!m!u!ap
1 ap

2 a
k
2−p
4 Γ(2 + u + r + m + nα + βk

2 −
k
2 )

.
Γ( k

2 + 1)Γ( γk
2 + n)Γ(p + u)

Γ( γk
2 + 1−m)Γ(p)Γ( γk

2 )
,

C(y, t) = a7Gm
∞

∑
l=0

∞

∑
p=0

∞

∑
j=0

aj
4(−1)l+pScja5M(2l+2p)t(1+l+p)

p!aj
3β

j
oΓ(2 + l + p)

Γ(j + p)
Γ(j)

(51)

+a7Gm
∞

∑
k=1

∞

∑
n=0

∞

∑
m=0

∞

∑
l=0

∞

∑
p=0

∞

∑
j=0

(−y)kan(−1)l+pScjβ
k
2−j
o a5M(2m+2p+2l)t(1+l+p+m+nα+

βk
2 −

k
2 )

k!n!m!p!a
k
2−j
4 aj

3Γ(2 + l + p + m + nα + βk
2 −

k
2 )

.
Γ( k

2 + 1)Γ( γk
2 + n)Γ(j + p)

Γ( γk
2 + 1−m)Γ(j)Γ( γk

2 )
,

D(y, t) = a6Gr
∞

∑
p=0

∞

∑
r=0

∞

∑
u=0

ap
4 (−1)r+uPrpa5M(2r+2u)t(1+r+u)

u!ap
1 ap

2 β
p
o Γ(2 + r + u)

Γ(p + u)
Γ(p)

(52)

+a5Gr
∞

∑
k=1

∞

∑
n=0

∞

∑
p=0

∞

∑
r=0

∞

∑
u=0

(−y)kan(−1)r+u(Pr)
k
2+pa

k
2
4 a5M(2r+2u)t(1+nα+r+u+ βk

2 −
k
2 )

k!n!u!(a1a2)
k
2+pΓ(2 + nα + r + u + βk

2 −
k
2 )
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.
Γ( γk

2 + n)Γ(p + u)

Γ(p)Γ( γk
2 )

,

E(y, t) = a7Gm
∞

∑
l=0

∞

∑
p=0

∞

∑
j=0

aj
4(−1)l+p(Sc)ja5M(2l+2p)t(1+l+p)

p!aj
3β

j
oΓ(2 + l + p)

Γ(j + p)
Γ(j)

(53)

+a7Gm
∞

∑
k=1

∞

∑
n=0

∞

∑
l=0

∞

∑
p=0

∞

∑
j=0

(−y)kan(−1)l+pSc
k
2+jaj

4a5M(2l+2p)t(1+l+p+nα+
βk
2 −

k
2 )

k!n!p!a
k
2+j
3 β

j
oΓ(2 + l + p + nα + βk

2 −
k
2 )

Γ( γk
2 + n)Γ(j + p)

Γ(j)Γ( γk
2 )

.

5. Graphical Outcomes

This section presents the results of our analysis through a series of graphs. Each graph
is labeled with a title and a legend that explains the data being plotted.

6. Discussion

This study deals with the application of Prabhakar fractional derivatives with different
approaches to modeling with ternary nanoparticles. The Laplace transform method is
used to obtain the analytical solutions. For different fixed constant values, some graphs
are plotted to see the physical insights of a problem. Figure 2 presents the impact of
fractional parameters on temperature. In this figure, the influence of fractional parameters
can be seen in the solutions obtained with ternary, hybrid, and mono nanoparticles. It
is found that, for the fixed values of fractional parameters, the solutions obtained with
generalized laws are stronger and more accurate in exhibiting memory. As a result, the
ternary model is a more powerful approach in improving the fluid properties than the
hybrid or mono nanoparticle approaches. The behavior of the volumetric fraction in the
temperature field is seen in Figure 3 by fixing all the parameters, such as the volumetric
fraction parameters, to temperature. It is observed that the fluid temperature increases for
ternary, hybrid, and mono nanoparticles, respectively, and in comparison the temperature
of ternary nanoparticles is higher than others. Figure 4 presents the impact of Prandtl
number Pr on temperature. In this figure, the influence of the Prandtl number can be
seen in the solutions obtained with ternary, hybrid, and mono nanoparticles. When Pr
is increased, the temperature drops. Physically, the minimum thickness of the thermal
boundary layer is caused by thermal conductivity, which raises Pr values and thickens of the
fluid. Figure 5 presents the comparison of velocity with ternary, hybrid, and nanoparticles.
In this Figure, the influence of the fraction parameter can be seen in the solutions obtained
with ternary, hybrid, and mono nanoparticles. It is found that after fixing the fraction
parameter, the solution obtained with the generalized law increases and becomes more
accurate in exhibiting memory, and in comparison the velocity of ternary nanoparticle is
smaller than the others. Figures 6 and 7 show that after fixing the values of Gm and Gr,
the fluid velocity increased for mono, hybrid, and ternary nanoparticles, respectively. Gr
and Gm are the thermal and mass Grashof numbers, respectively. The Grashof number is
the physical ratio of buoyancy forces due to spatial variation in fluid density (caused by
temperature differences) to restraining forces due to fluid viscosity. The Grashof number
illustrates how the buoyancy force is dominating, causing convection and increasing fluid
velocity. A similar pattern was noticed for the mass Grashof number Gm. Figure 8 shows
the impact of volumetric fraction on the velocity profile. It can be observed that after fixing
the value of volumetric fraction parameter for ternary, hybrid, and mono nanoparticles, the
velocity decreases for ternary, hybrid, and mono nanoparticles, respectively. The behavior
of ternary, hybrid, and mono nanoparticles in relation to the magnetic field parameter is
shown in Figure 9. It is evident that the velocity of ternary, hybrid, and mono nanoparticles
falls when the value of M is fixed.
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Figure 2. Comparison of temperature assessment across y as α = 0.5, β = 0.5, and γ = 0.5 when
t = 0.04, Sc = 1.5, and Pr = 21.

Figure 3. Comparison of temperature assessment across y as volume fraction φ1 = φ2 = φ3 = 0.01
when α = β = γ = 0.5, t = 0.04, Sc = 1.5, and Pr = 21.
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Figure 4. Comparison of temperature assessment with Pr across y as α = 0.5, β = 0.5, and γ = 0.5
when t = 0.04 and Sc = 1.5.

Figure 5. Comparison of velocity assessment with α β γ across y as Sc = 9.2 when t = 1,
α = β = γ = 0.2, M = 1.5, and Pr = 21.
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Figure 6. Comparison of velocity assessment with Gm across y as α = β = γ = 0.5 when t = 1,
Sc = 9.2, φ1 = 0.02, φ2 = 0.03, φ3 = 0.04, Pr = 21, and M = 1.5.

Figure 7. Comparison of velocity assessment with Gr across y as α = 0.5, β = 0.5, γ = 0.5 when t = 1,
Sc = 9.2, φ1 = 0.02, φ2 = 0.03, φ3 = 0.04, Pr = 21, and M = 1.5.
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Figure 8. Comparison of velocity assessment with volume fraction across y as α = β = γ = 0.5 when
t = 1 , Pr = 21, and M = 1.5.

Figure 9. Comparison of velocity assessment with magnetic parameter M across y as α = 0.3, β = 0.3,
γ = 0.3 when t = 1, φ1 = 0.03, φ2 = 0.03, φ3 = 0.03 Pr = 21, Gm = 1.4, and Gr = 1.5
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7. Conclusions

This study reveals the comparison approach of ternary nanoparticles, hybrid nanopar-
ticles, and mononanoparticles in the solutions obtained by generalized laws for the Casson
fluid. We developed the fractionalized diffusion equation by applying the Prabhakar frac-
tional derivative with generalized laws. The Laplace transform approach is used to obtain
the critical findings for dimensionless fluid velocity and temperature. Significant findings
are regarded as follows, according to the above principle:

• The model based on ternary is stronger approach than the hybrid and mono nanoparticle.
• Enhancement in temperature and velocity can be achieved for larger values of frac-

tional parameters.
• Model based on generalized laws are reliable way for fractional modeling and can be

accurately fitted any experimental data.
• Maximum temperature is achievable for ternary nanoparticles instead of hybrid and

mono nanoparticles, respectively.

8. Future Work

In the future, this work can be extended for other non-Newtonian fluids, for example,
Maxwell; Oldroyd-B; and Micropolar with additional properties such as the heat source and
the chemical reaction for different geometries between the two walls of an inclined plane.
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Nomenclature
Symbol Explanation Unit
ρ Density kg/m3

τ Shear stress Pascal (Pa) N/s2

Cp Specific heat capacity JK−1kg−1

µ Fluid viscosity kg/ms
β0 Casson parameter no unit
Gr Thermal Grashof number no unit
Pr Prandtl number no unit
Gm Mass Grashof number no unit
Sc Schimdt number no unit
g Gravitational force m/s2

βc Volumetric expansion mol−1.m3

D mass diffusion coefficient m3

βT Thermal expansion K−1

α Fractional derivative parameter no unit
β Fractional derivative parameter no unit
γ Fractional derivative parameter no unit
σ Electrical conductivity S.m−1
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T∞ Ambient temperature K
Tw Wall temperature K
Cw Wall concentration mol.m−3

C∞ Ambient concentration mol.m−3

q Frequency s−1

ν Fluid kinematic viscosity m2.s−1

M
Dimensionless magnetic
parameter

no unit

A Accelration m/s2
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