The Hormetic Response of Soil P Extraction Induced by Low-Molecular-Weight Organic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Pretreatment
2.2. The Species of LMWOAs
2.3. The Concentration of Organic Acids
2.4. Determination of the P Concentration Extracted by LMWOAs
2.5. Calculation of the P Extraction Efficiency
2.6. Model of LMWOA Concentrations and the P Extraction Efficiency
2.7. Parameter Calculations
2.8. Statistical Analysis
3. Results
3.1. Effect of Different Types and Concentrations of LMWOAs on P Release
3.2. Different Fitting Curves Simulated the P Extraction Efficiency of the LMWOAs
3.3. The Hormetic Effect of LMWOAs on the P Extraction Efficiency
3.4. The Hormetic Parameters of the P Extraction Efficiency of Different LMWOAs in Soil
3.5. The Verification of Xmax and the Measured Value of the Maximum Amount of P
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lambers, H. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; White, P.J.; Cheng, L.Y. Mechanisms for improving phosphorus utilization efficiency in plants. Ann. Bot. 2022, 129, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Hou, E.Q.; Tang, S.B.; Chen, C.R.; Kuang, Y.W.; Lu, X.K.; Heenan, M.; Wen, D.Z. Solubility of phosphorus in subtropical forest soils as influenced by low molecular organic acids and key soil properties. Geoderma 2018, 313, 172–180. [Google Scholar] [CrossRef]
- Jones, D.L. Organic acids in the rhizosphere—A critical review. Plant Soil 1998, 205, 25–44. [Google Scholar] [CrossRef]
- Liu, J.; Han, C.; Zhao, Y.; Yang, D.; Yang, J.; Zheng, L.; Hu, Y.; Li, J.; Sui, P.; Chen, Y.; et al. Molecular-level insights into phosphorus transformation mechanisms in entisol soils under multiple long-term fertilization regimes. Agronomy 2022, 12, 2760. [Google Scholar] [CrossRef]
- Gilbert, N. Environment: The disappearing nutrient. Nature 2009, 461, 716–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augusto, L.; Achat, D.L.; Jonard, M.; Vidal, D.; Ringeval, B. Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Chang. Bio. 2017, 23, 3808–3824. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Veneklaas, E.J. Nature and nurture: The importance of seed phosphorus content. Plant Soil 2012, 357, 1–8. [Google Scholar] [CrossRef]
- Jones, D.L.; Nguyen, C.; Finlay, R.D. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant Soil 2009, 321, 5–33. [Google Scholar] [CrossRef]
- Ryan, P.R.; Delhaize, E.; Jones, D.L. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2001, 52, 527–560. [Google Scholar] [CrossRef]
- Adeleke, R.; Nwangburuka, C.; Oboirien, B. Origins, roles and fate of organic acids in soils: A review. S. Afr. J. Bot. 2017, 108, 393–406. [Google Scholar] [CrossRef]
- Menezes-Blackburn, D.; Paredes, C.; Zhang, H.; Giles, C.D.; Darch, T.; Stutter, M. Organic acids regulation of chemical–microbial phosphorus transformations in soils. Environ. Sci. Technol. 2016, 50, 11521–11531. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Wang, Y.; Yeh, K.C. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 2017, 39, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Baetz, U.; Martinoia, E. Root exudates: The hidden part of plant defense. Trends Plant Sci. 2014, 19, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Narula, N.; Kothe, E.; Behl, R.K. Role of root exudates in plant-microbe interactions. J. App. Bot. Food Qual. 2012, 82, 122–130. [Google Scholar]
- Zhao, K.; Wu, Y.Y. Rhizosphere calcareous soil P-extraction at the expense of organic carbon from root-exuded organic acids induced by phosphorus deficiency in several plant species. Soil Sci. Plant Nutr. 2014, 60, 640–650. [Google Scholar] [CrossRef]
- Ström, L.; Owen, A.G.; Godbold, D.L.; Jones, D.L. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol. Biochem. 2005, 37, 2046–2054. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. Toxicology rethinks its central belief. Nature 2003, 421, 691–692. [Google Scholar] [CrossRef]
- Abbas, T.; Nadeem, M.A.; Tanveer, A.; Chauhan, B.S. Can hormesis of plantreleased phytotoxins be used to boost and sustain crop production? Crop Prot. 2017, 93, 69–76. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Blain, R.B. The hormesis database: The occurrence of hermetic dose responses in the toxicological literature. Regul. Toxicol. Pharmacol. 2011, 61, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Stebbing, A.R.D. A theory for growth hormesis. Mut. Res. Fund Mol. M. 1998, 403, 249–258. [Google Scholar] [CrossRef]
- Calabrese, E.J. Overcompensation stimulation: A mechanism for hormetic effects. Crit. Rev. Toxicol. 2001, 31, 425–470. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, W.; Maudsley, S. The devil is in the dose: Complexity of receptor systems and responses. In Hormesis; Mattson, M.P., Calabrese, E.J., Eds.; Humana Press: New Jersey, NJ, USA, 2010; pp. 95–108. [Google Scholar]
- Sun, H.; Pan, Y.; Gu, Y.; Lin, Z. Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri. Sci. Total Environ. 2018, 630, 11–19. [Google Scholar] [CrossRef]
- Luna–López, A.; González-Puertos, V.Y.; López-Diazguerrero, N.E.; Knigsberg, M. New considerations on hormetic response against oxidative stress. J. Cell Commun. Signal 2014, 8, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Ludovico, P.; Burhans, W.C. Reactive oxygen species, ageing and hormesis police. FEMS Yeast Res. 2014, 14, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erofeeva, E.A. Environmental hormesis of non-specific and specific adaptive mechanisms in plants. Sci. Total Environ. 2022, 804, 150059. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Agathokleous, E. Accumulator plants and hormesis. Environ. Pollut. 2021, 274, 116526. [Google Scholar] [CrossRef]
- Jalal, A.; de Oliveira Junior, J.C.; Ribeiro, J.S.; Fernandes, G.C.; Mariano, G.G.; Trindade, V.D.R.; dos Reis, A.R. Hormesis in plants: Physiological and biochemical responses. Ecotox. Environ. Safe. 2021, 207, 111225. [Google Scholar] [CrossRef]
- Wang, S.Y.; Huang, B.; Fan, D.W.; Agathokleous, E.; Guo, Y.H.; Zhu, Y.L.; Han, J.G. Hormetic responses of soil microbiota to exogenous Cd: A step toward linking community-level hormesis to ecological risk assessment. J. Hazard. Mater. 2021, 416, 125760. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.D.; Chen, W.Q.; Dai, H.B.; Wang, X.Q.; Yang, L.; Kang, Y.C.; Sun, H.; Wang, L. Cadmium-induced hormesis effect in medicinal herbs improves the efficiency of safe utilization for low cadmium-contaminated farmland soil. Ecotox. Environ. Safe. 2021, 225, 112724. [Google Scholar]
- Zhu, Y.; Liu, C.; You, Y.; Liu, J.; Guo, Y.H.; Han, J. Magnitude of the mixture hormetic response of soil alkaline phosphatase can be predicted based on single conditions of Cd and Pb. Ecotoxicology 2019, 28, 790–800. [Google Scholar] [CrossRef]
- Silva, F.M.L.; Duke, S.O.; Dayan, F.E.; Velini, E.D. Low doses of glyphosate change the responses of soyabean to subsequent glyphosate treatments. Weed Res. 2016, 56, 124–136. [Google Scholar] [CrossRef]
- Lu, R.S. Methods in Agricultural Chemical Analysis of Soil; China Agricultural Science and Technology Publishing House: Beijing, China, 1999; pp. 1–256. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorous, Methods of Soil Analysis, Part 2-Chemical and Microbiological Properties; Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Lu, M.; Xu, C.H.; Zhu, Y.L.; Li, P.P. Hormetic effect of Cd on soil alkaline phosphatase: Driving mechanism of land use change. J. Nanjing For. U. (Nat. Sci. Ed.) 2020, 44, 173–180. (In Chinese) [Google Scholar]
- Fan, D.W.; Han, J.G.; Chen, Y.; Zhu, Y.L.; Li, P.P. Hormetic effects of Cd on alkaline phosphatase in soils across particle-size fractions in a typical coastal wetland. Sci. Total Environ. 2018, 613–614, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.E.; Loeppert, R.H. Role of organic acids in phosphate mobilization from iron oxide. Soil Sci. Soc. Am. J. 2006, 70, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.L.; Dennis, P.; Owen, A.; Van Hees, P. Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil 2003, 248, 31–41. [Google Scholar] [CrossRef]
- Ström, L.; Owen, A.G.; Godbold, D.L.; Jones, D.L. Organic acid mediated P mobization in the rhizosphere and uptake by maize roots. Soil Biol. Biochem. 2002, 34, 703–710. [Google Scholar] [CrossRef]
- Almeida, D.S.; Delai, L.B.; Frankland Sawaya, A.C.H.F.; Rosolem, C.A. Exudation of organic acid anions by tropical grasses in response to low phosphorus availability. Sci. Rep. 2020, 10, 16955. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, X.; Guo, E.H.; Yang, X.T. Path analysis of phosphorus activation capacity as induced by low-molecular-weight organic acids in a black soil of northeast China. J. Soil Sediment 2019, 19, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Mondala, A.; Shields, S.; Gaviglio, K.; Kaczmarek, S. Influence of fungal low-molecular-weight organic acids on extraction and speciation of runoff particulate-associated phosphorus: Implications for nonpoint phosphorus recovery and beneficial reuse. Environ. Prog. Sustain. 2017, 36, 1810–1816. [Google Scholar] [CrossRef]
- George, T.S.; Gregory, P.J.; Wood, M.; Read, D.; Buresh, R.J. Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Bio. Biochem. 2002, 34, 1487–1494. [Google Scholar] [CrossRef]
- Gong, S.; Wang, X.; Zhang, T.; Li, Q.; Zhou, J. Release of inorganic phosphorus from red soils induced by low-molecular-weight organic acids. Acta Pedol. Sin. 2010, 47, 692–697. (In Chinese) [Google Scholar]
- Harrold, S.A.; Tabatabai, M.A. Release of inorganic phosphorus from soils by low-molecular-weight organic acids. Commun. Soil Sci. Plan. 2006, 37, 1233–1245. [Google Scholar] [CrossRef]
- Xu, R.K.; Zhu, Y.G.; Chittleborough, D. Phosphorus release from phosphate rock and iron phosphate by low-molecular weight organic acids. J. Environ. Sci. China 2004, 16, 5–8. [Google Scholar]
Sampling Area | pH | SOM (g kg−1) | CEC (cmol kg−1) | TP (mg kg−1) | AP (mg kg−1) |
---|---|---|---|---|---|
S1 | 6.24 ± 0.52 | 20.14 ± 1.48 | 17.6 ± 0.73 | 530 ± 22.65 | 3.20 ± 0.27 |
S2 | 6.03 ± 0.74 | 17.55 ± 0.40 | 15.46 ± 1.27 | 494 ± 30.71 | 3.65 ± 0.15 |
S3 | 5.64 ± 0.36 | 19.75 ± 0.64 | 8.90 ± 1.92 | 409 ± 18.56 | 4.60 ± 0.49 |
S4 | 6.03 ± 0.24 | 22.7 ± 1.27 | 11.25 ± 1.83 | 475 ± 17.52 | 4.31 ± 0.54 |
S5 | 5.81 ± 0.47 | 20.9 ± 3.46 | 7.97 ± 0.55 | 377 ± 18.94 | 3.41 ± 0.53 |
S6 | 5.26 ± 0.31 | 25.79 ± 2.11 | 10.74 ± 0.33 | 441 ± 21.77 | 4.01 ± 0.57 |
Organic Acid | Chemical Formula | Dissociation Constant | CAS Number |
---|---|---|---|
Citric acid | HOOCCH2-C(OH)COOH-CH2COOH | K1 = 7.4 × 10−4 K2 = 1.7 × 10−6 K3 = 4.0 × 10−7 | 77-92-9 |
Oxalic acid | HOOC-COOH | K1 = 5.9 × 10−2 K2 = 6.4 × 10−5 | 144-62-7 |
Malic acid | HOOC-CH(OH)-CH2-COOH | K1 = 4.0 × 10−4 K2 = 8.9 × 10−6 | 133-37-9 |
Tartaric acid | HOOC-CH(OH)-CH(OH)-COOH | K1 = 9.1 × 10−4 K2 = 4.3 × 10−5 | 617-48-1 |
Organic Acid | Sampling Area | Linear Equation | Quadratic Polynomial Equation | Exponential Equation | Hyperbolic Equation |
---|---|---|---|---|---|
CA | S1 | r = 0.0829, p = 0.8598 | r = 0.9845, p = 0.0007 | r = 0.2320, p = 0.6167 | r = 0.4133, p = 0.3593 |
S2 | r = 0.1560, p = 0.7384 | r = 0.9911, p = 0.0003 | r = 0.1827, p = 0.6150 | r = 0.3743, p = 0.4081 | |
S3 | r = 0.1299, p = 0.7814 | r = 0.9829, p = 0.0011 | r = 0.2093, p = 0.6523 | r = 0.4063, p = 0.3657 | |
S4 | r = 0.0329, p = 0.9341 | r = 0.9714, p = 0.0032 | r = 0.3183, p = 0.4866 | r = 0.4848, p = 0.2701 | |
S5 | r = 0.0163, p = 0.9723 | r = 0.8070, p = 0.1216 | r = 0.2526, p = 0.5847 | none | |
S6 | r = 0.2478, p = 0.5922 | r = 0.9222, p = 0.0224 | r = 0.4727, p = 0.2841 | r = 0.6104, p = 0.1455 | |
OA | S1 | r = 0.0895, p = 0.8487 | r = 0.8958, p = 0.0390 | r = 0.2168, p = 0.6405 | r = 0.3968, p = 0.3781 |
S2 | r = 0.0131, p = 0.9778 | r = 0.7569, p = 0.1825 | r = 0.2288, p = 0.6216 | none | |
S3 | r = 0.1376, p = 0.7686 | r = 0.8266, p = 0.1003 | r = 0.3612, p = 0.4261 | r = 0.5002, p = 0.2529 | |
S4 | r = 0.1978, p = 0.6707 | r = 0.6813, p = 0.2872 | r = 0.0882, p = 0.8509 | r = 0.2633, p = 0.5684 | |
S5 | r = 0.0445, p = 0.9245 | r = 0.8239, p = 0.1031 | r = 0.2805, p = 0.5424 | r = 0.4218, p = 0.3459 | |
S6 | r = 0.0540, p = 0.9085 | r = 0.8482, p = 0.0787 | r = 0.2901, p = 0.5279 | r = 0.4324, p = 0.3325 | |
TA | S1 | r = 0.9874, p < 0.0001 | r = 0.9954, p < 0.0001 | r = 0.9945, p < 0.0001 | r = 0.9950, p < 0.0001 |
S2 | r = 0.9889, p < 0.0001 | r = 0.9948, p = 0.0001 | r = 0.9937, p < 0.0001 | r = 0.9947, p < 0.0001 | |
S3 | r = 0.9742, p = 0.0002 | r = 0.9972, p < 0.0001 | r = 0.9954, p < 0.0001 | r = 0.9979, p < 0.0001 | |
S4 | r = 0.9759, p = 0.0002 | r = 0.9978, p < 0.0001 | r = 0.9980, p < 0.0001 | r = 0.9949, p < 0.0001 | |
S5 | r = 0.9815, p < 0.0001 | r = 0.9918, p = 0.0003 | r = 0.9936, p < 0.0001 | r = 0.9921, p < 0.0001 | |
S6 | r = 0.9502, p = 0.0010 | r = 0.9864, p = 0.0007 | r = 0.9750, p = 0.0002 | r = 0.9851, p < 0.0001 | |
MA | S1 | r = 0.9619, p = 0.0005 | r = 0.9980, p < 0.0001 | r = 0.9853, p < 0.0001 | r = 0.9958, p < 0.0001 |
S2 | r = 0.9581, p = 0.0007 | r = 0.9990, p < 0.0001 | r = 0.9852, p < 0.0001 | r = 0.9974, p < 0.0001 | |
S3 | r = 0.9846, p = 0.0002 | r = 0.9990, p < 0.0001 | r = 0.9917, p < 0.0001 | r = 0.9959, p < 0.0001 | |
S4 | r = 0.9936, p < 0.0001 | r = 0.9961, p < 0.0001 | r = 0.9956, p < 0.0001 | r = 0.9956, p < 0.0001 | |
S5 | r = 0.9881, p < 0.0001 | r = 0.9959, p < 0.0001 | r = 0.9968, p < 0.0001 | r = 0.9941, p < 0.0001 | |
S6 | r = 0.9502, p = 0.0010 | r = 0.9970, p < 0.0001 | r = 0.9985, p < 0.0001 | r = 0.9905, p < 0.0001 |
Organic Acid | Sampling Area | D1 | D2 | NMe | Ymax | Xmax | ΔD | R |
---|---|---|---|---|---|---|---|---|
CA | S1 | 0.25 | 19.71 | 9.98 | 766.53 | 6.671 | 19.47 | 3462.02 |
S2 | −0.05 | 19.58 | 9.76 | 709.24 | 4.880 | 19.63 | 10,348.89 | |
S3 | −0.22 | 19.90 | 9.84 | 2595.81 | 7.627 | 20.12 | 91,640.69 | |
S4 | 0.77 | 19.92 | 10.34 | 3187.55 | 8.980 | 19.14 | 359,471.28 | |
S5 | 0.13 | 20.21 | 10.17 | 2486.25 | 4.206 | 20.08 | 927.91 | |
S6 | 0.26 | 21.82 | 11.04 | 3142.28 | 5.968 | 21.56 | 48,043.38 | |
Mean | 0.19 | 20.19 | 10.19 | 2147.94 | 6.39 | 20.00 | 85,649.03 | |
OA | S1 | 0.0007 | 19.87 | 9.93 | 1575.89 | 2.393 | 19.87 | 20,803.00 |
S2 | 0.29 | 20.06 | 10.18 | 1306.62 | 2.686 | 19.77 | 4640.14 | |
S3 | 0.51 | 20.93 | 10.72 | 1277.31 | 2.156 | 20.43 | 17,545.39 | |
S4 | −0.99 | 19.68 | 9.34 | 865.93 | 2.243 | 20.67 | 34,611.48 | |
S5 | 0.76 | 20.01 | 10.39 | 2170.61 | 2.304 | 19.25 | 153,124.61 | |
S6 | 0.93 | 19.90 | 10.41 | 2739.53 | 2.686 | 18.97 | 338,497.80 | |
Mean | 0.25 | 20.08 | 10.16 | 1655.98 | 2.41 | 19.83 | 94,870.4 | |
TA | S1 | −0.31 | 66.72 | 33.21 | 1405.37 | 5.140 | 67.03 | 64,938.87 |
S2 | −0.10 | 73.76 | 36.83 | 6351.19 | 3.975 | 73.87 | 325,099.21 | |
S3 | −0.72 | 47.88 | 23.58 | 1379.29 | 4.952 | 48.60 | 53,357.95 | |
S4 | −1.35 | 48.67 | 23.66 | 2031.52 | 4.437 | 50.02 | 99,439.14 | |
S5 | −0.73 | 61.49 | 30.38 | 3722.44 | 4.040 | 62.22 | 194,178.65 | |
S6 | 0.13 | 41.29 | 20.71 | 2402.48 | 1.990 | 41.17 | 58,974.82 | |
Mean | −0.51 | 56.64 | 28.06 | 2882.05 | 4.09 | 57.15 | 132,664.8 | |
MA | S1 | 0.15 | 41.42 | 20.79 | 1311.12 | 6.292 | 41.27 | 33,654.08 |
S2 | 0.10 | 40.13 | 20.12 | 1526.65 | 5.657 | 40.03 | 38,391.42 | |
S3 | 0.59 | 53.79 | 27.19 | 3844.97 | 12.944 | 53.20 | 84,472.27 | |
S4 | −1.01 | 47.81 | 23.40 | 1377.65 | 6.008 | 48.82 | 56,633.99 | |
S5 | −0.81 | 107.43 | 53.31 | 6415.57 | 8.244 | 108.24 | 507,038.31 | |
S6 | −1.51 | 65.56 | 32.02 | 1706.55 | 2.894 | 67.06 | 90,363.37 | |
Mean | −0.42 | 59.36 | 29.47 | 2697.08 | 7.01 | 59.77 | 135,092.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Wang, C.; Xiao, X.; Li, M.; Zhao, W.; Wang, Y.; Yang, Y. The Hormetic Response of Soil P Extraction Induced by Low-Molecular-Weight Organic Acids. Processes 2023, 11, 216. https://doi.org/10.3390/pr11010216
Zhao K, Wang C, Xiao X, Li M, Zhao W, Wang Y, Yang Y. The Hormetic Response of Soil P Extraction Induced by Low-Molecular-Weight Organic Acids. Processes. 2023; 11(1):216. https://doi.org/10.3390/pr11010216
Chicago/Turabian StyleZhao, Kuan, Cong Wang, Xin Xiao, Ming Li, Wenrui Zhao, Yixuan Wang, and Yang Yang. 2023. "The Hormetic Response of Soil P Extraction Induced by Low-Molecular-Weight Organic Acids" Processes 11, no. 1: 216. https://doi.org/10.3390/pr11010216