Combining Deep Neural Network with Genetic Algorithm for Axial Flow Fan Design and Development
Abstract
1. Introduction
2. Research Method
2.1. Data Preprocessing
2.2. Modeling Using DNN
2.3. Optimization Using GA
3. Results and Discussion
3.1. Axial Flow Fan Erection
3.2. Fan Installation Process
- First, confirm that the relevant system connections were completed.
- Turn on the system and host computer power.
- Install the fan to be tested in a suitable location.
3.3. Modeling
3.4. Optimization
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallis, A.R. Axial Flow Fans: Design and Practice; Academic Press, Inc: New York, NY, USA, 1961; ISBN 9781483227849. [Google Scholar]
- Shahsavari, A.; Nili-Ahmadabadi, M. A Novel Approach for the Design of Axial Flow Fan by Increasing By-Pass Ratio in a Constant-Diameter Turbofan. Propuls. Power Res. 2020, 9, 142–158. [Google Scholar] [CrossRef]
- Xu, C.; Mao, Y.; Hu, Z. Tonal and Broadband Noise Control of an Axial-Flow Fan with Metal Foams: Design and Experimental Validation. Appl. Acoust. 2017, 127, 346–353. [Google Scholar] [CrossRef]
- Sarraf, C.; Nouri, H.; Ravelet, F.; Bakir, F. Experimental Study of Blade Thickness Effects on the Overall and Local Performances of a Controlled Vortex Designed Axial-Flow Fan. Exp. Therm. Fluid Sci. 2011, 35, 684–693. [Google Scholar] [CrossRef]
- Podgaietsky, G.L.; de Oliveira, M.L.C.; Hermes, C.J.L. Model-Based Efficiency Mapping and Parametric Analysis of Low-Pressure Axial Fans. Int. J. Refrig. 2022, 144, 136–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Li, J. Volume Flow Rate Optimization of an Axial Fan by Artificial Neural Network and Genetic Algorithm. OJFD 2019, 9, 207–223. [Google Scholar] [CrossRef]
- Lin, B.-J.; Hung, C.-I.; Tang, E.-J. An Optimal Design of Axial-Flow Fan Blades by the Machining Method and an Artificial Neural Network. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2002, 216, 367–376. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, J.; Jiang, B.; Li, Z.; Xiao, Q.; Wu, L.; Xie, B. Multi-Objective Optimization for the Radial Bending and Twisting Law of Axial Fan Blades. Processes 2022, 10, 753. [Google Scholar] [CrossRef]
- Hang, J.; Dian-Rong, G.; Yunhua, L. Multi-objective Optimization for Axial Flow Fan Based on BP Neural Network and Genetic Algorithm. J. Chin. Soc. Mech. Eng. 2018, 39, 433–442. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Yang, S. Load demand forecasting of residential buildings using a deep learning model. Electr. Power Syst. Res. 2020, 179, 106073. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, J. A novel ensemble method for hourly residential electricity consumption forecasting by imaging time series. Energy 2020, 203, 117858. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Peng, L.; Zeng, Y.-R. Effective energy consumption forecasting using enhanced bagged echo state network. Energy 2020, 193, 116778. [Google Scholar] [CrossRef]
- Kim, M.; Jung, S.; Kang, J. Artificial Neural Network-Based Residential Energy Consumption Prediction Models Considering Residential Building Information and User Features in South Korea. Sustainability 2019, 12, 109. [Google Scholar] [CrossRef]
- Chaerun Nisa, E.; Kuan, Y.-D. Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms. Sustainability 2021, 13, 744. [Google Scholar] [CrossRef]
- Zokaee, F.; Li, B.; Chen, F. FeFET-Based Process-in-Memory Architecture for Low-Power DNN Training. In Proceedings of the 2021 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), AB, Canada, 8–10 November 2021. [Google Scholar]
- Lukac, P.; Tarabek, P. Improving DNN Solution using Repeated Training. In Proceedings of the 2019 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, 25–27 June 2019. [Google Scholar]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of trends in Practice and Research for Deep Learning. 2021. Available online: http://arxiv.org/abs/1811.03378 (accessed on 17 September 2022).
- Chen, L.; Wang, Y.; Li, H. Enhancement of DNN-based multilabel classification by grouping labels based on data imbalance and label correlation. Pattern Recognit. 2022, 132, 108964. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Lyu, Q.; Li, F. Comprehensive system based on a DNN and LSTM for predicting sinter composition. Appl. Soft Comput. 2020, 95, 106574. [Google Scholar] [CrossRef]
- Hewage, R.; Artificial Neural Network in Python. Medium. 2020. Available online: https://medium.com/datadriveninvestor/artificial-neural-network-in-python-704fae2e23 (accessed on 17 September 2022).
- Kwon, H.; Lai, L.; Pellauer, M.; Krishna, T.; Chen, Y.H.; Chandra, V. Heterogeneous Dataflow Accelerators for Multi-DNN Workloads. In Proceedings of the 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Korea, 27 February 2021—3 March 2021. [Google Scholar]
- Teja KB, R.; Kumar, T.K. Real-Time Smart Drivers Drowsiness Detection Using DNN. In Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Telangana, India, 3–5 June 2021. [Google Scholar]
- Han, S.; Choi, H.; Choi, J.; Choi, J.H.; Kim, J. A DNN-based data-driven modeling employing coarse sample data for real-time flexible multibody dynamics simulations. Comput. Methods Appl. Mech. Eng. 2021, 373, 113480. [Google Scholar] [CrossRef]
- Savoldi, L.; Allio, A.; Leggieri, A. Optimization of the flow distribution in a gyrotron cavity using evolutionary CFD simulations driven by a genetic algorithm. Int. J. Heat Fluid Flow 2022, 96, 108987. [Google Scholar] [CrossRef]
- Gu, Z.; Pang, S.; Li, Y.; Li, Q.; Zhang, Y. Turbo-fan engine acceleration control schedule optimization based on DNN-LPV model. Aerosp. Sci. Technol. 2022, 128, 107797. [Google Scholar] [CrossRef]
- Dai, M.; Xu, A.; Huang, Q.; Zhang, Z.; Lin, X. Vertical federated DNN training. Phys. Commun. 2021, 49, 101465. [Google Scholar] [CrossRef]
- Tanghatari, E.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. Distributing DNN training over IoT edge devices based on transfer learning. Neurocomputing 2022, 467, 56–65. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, S.; Ren, H.; Ma, L.; Xu, Y. A hybrid FEM-DNN-based vortex-induced Vibration Prediction Method for Flexible Pipes under oscillatory flow in the time domain. Ocean. Eng. 2022, 246, 110488. [Google Scholar] [CrossRef]
- Somu, N.; Raman, M.R.G.; Ramamritham, K. A hybrid model for building energy consumption forecasting using long, short term memory networks. Appl. Energy 2020, 261, 114131. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, Y.; Srebric, J. Predictions of electricity consumption in a campus building using occupant rates and weather elements with sensitivity analysis: Artificial neural network vs. linear regression. Sustain. Cities Soc. 2020, 62, 102385. [Google Scholar] [CrossRef]
- Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett. 2021, 141, 61–67. [Google Scholar] [CrossRef]
- Sivapatham, S.; Ramadoss, R.; Kar, A.; Majhi, B. Monaural speech separation using GA-DNN integration scheme. Appl. Acoust. 2020, 160, 107140. [Google Scholar] [CrossRef]
- Yang, D.; Yu, W.; Ding, X.; Zhou, A.; Wang, X. DP-Nets: Dynamic programming assisted quantization schemes for DNN compression and acceleration. Integration 2022, 82, 147–154. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, C.; Dong, X.; Li, W.; Noblesse, F. Design of marine propellers with prescribed and optimal spanwise circulation distributions based on genetic algorithms and neural network. Appl. Ocean. Res. 2022, 127, 103318. [Google Scholar] [CrossRef]
- Hanandeh, S. Introducing mathematical modeling to estimate pavement quality index of flexible pavements based on genetic algorithm and artificial neural networks. Case Stud. Constr. Mater. 2022, 16, e00991. [Google Scholar] [CrossRef]
- Liu, J.; Xia, Y. A hybrid intelligent genetic algorithm for truss optimization based on deep neutral network. Swarm Evol. Comput. 2022, 73, 101120. [Google Scholar] [CrossRef]
- Haq, Z.U.; Ullah, H.; Khan, M.N.A.; Naqvi, S.R.; Ahsan, M. Hydrogen production optimization from sewage sludge supercritical gasification process using machine learning methods integrated with genetic algorithm. Chem. Eng. Res. Des. 2022, 184, 614–626. [Google Scholar] [CrossRef]
- AMCA Standard 210-16 ASHRAE Standard 51-16. Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating, 2016. Long Vigtory Instruments: Taoyuan City, Taiwan, 2022; Operating Instructions, SW-300.
Product Name | Fan Performance Measurement System | |
---|---|---|
Performance | Airflow Rate | air volume 2.5~300 CFM |
Static Pressure | wind pressure 0~2490 Pa | |
Structure | AMCA 210-2016. | |
Test Item | System SRC, DC/AC fan P-Q characteristic curve test. Automatic measurement of thermal resistance, TRC curve. | |
Static pressure | dp: Static pressure measurement range before and after the nozzle 1277 mmAq PS1: static pressure measurement range 25.4 mmAq PS2: static pressure measuring range 101.6 mmAq PS3: static pressure measuring range 254 mmAq | |
Machine size | Weight | 200 kg |
Size (W × D × H) | 1.9 × 1.5 × 1.4 (m) | |
Power Systems | DC power supply | DC 60 V, 10 A 600 W |
Control System | Control method | PC Base/LONG VIGTORY high-precision wind tunnel testing software |
Control program | automatic/manual | |
Equipment Structure | Cavity material | steel plate painting |
Internal material | steel plate painting |
Fan Specification | FAN1 | FAN2 | ||
---|---|---|---|---|
Chord length root (mm) | 20.47 | 12.17 | ||
Chord length tip (mm) | 27.61 | 16 | ||
Pitch angle | 62.5 | 39.86 | ||
Twist angle | 21.32 | 6.56 | ||
Impeller diameter (mm) | 75.25 | 74.3 | ||
Hub OD (mm) | 32.83 | 34.24 | ||
Blade number | 9 | 11 | ||
Tip clearance (mm) | 0.9 | 0.9 | ||
Frame thickness (mm) | 25.16 | 15.49 | ||
Fan specification | FAN3 | FAN4 | ||
Chord length root (mm) | 17.62 | 12.17 | ||
Chord length tip (mm) | 30.5 | 16 | ||
Pitch angle | 44.45 | 39.86 | ||
Twist angle | 17.66 | 6.56 | ||
Impeller diameter (mm) | 74.05 | 74.3 | ||
Hub OD (mm) | 32.92 | 34.24 | ||
Blade number | 7 | 11 | ||
Tip clearance (mm) | 0.8 | 0.9 | ||
Frame thickness (mm) | 25.4 | 15.49 | ||
Fan specification | FAN5 | FAN6 | ||
Chord length root (mm) | 18.01 | 12.17 | ||
Chord length tip (mm) | 25.97 | 16 | ||
Pitch angle | 60.6 | 39.86 | ||
Twist angle | 24.6 | 6.56 | ||
Impeller diameter (mm) | 72.55 | 74.3 | ||
Hub OD (mm) | 32.17 | 34.24 | ||
Blade number | 7 | 11 | ||
Tip clearance (mm) | 1.3 | 0.9 | ||
Frame thickness (mm) | 25.12 | 15.49 |
Fan Specification | FAN7 | FAN8 | ||
---|---|---|---|---|
Chord length root (mm) | 7 | 12.17 | ||
Chord length tip (mm) | 13 | 16 | ||
Pitch angle | 51.7 | 39.86 | ||
Twist angle | 16 | 6.56 | ||
Impeller diameter (mm) | 47.9 | 74.3 | ||
Hub OD (mm) | 25 | 34.24 | ||
Blade number | 11 | 11 | ||
Tip clearance (mm) | 1.3 | 0.9 | ||
Frame thickness (mm) | 15.23 | 15.49 | ||
Fan specification | FAN9 | FAN10 | ||
Chord length root (mm) | 16.9 | 12.17 | ||
Chord length tip (mm) | 20.33 | 16 | ||
Pitch angle | 60.3 | 39.86 | ||
Twist angle | 13.87 | 6.56 | ||
Impeller diameter (mm) | 74.21 | 74.3 | ||
Hub OD (mm) | 32.26 | 34.24 | ||
Blade number | 7 | 11 | ||
Tip clearance (mm) | 0.5 | 0.9 | ||
Frame thickness (mm) | 25.03 | 15.49 | ||
Fan specification | FAN11 | FAN12 | ||
Chord length root (mm) | 20.63 | 12.17 | ||
Chord length tip (mm) | 29.5 | 16 | ||
Pitch angle | 45.8 | 39.86 | ||
Twist angle | 14 | 6.56 | ||
Impeller diameter (mm) | 117 | 74.3 | ||
Hub OD (mm) | 40.24 | 34.24 | ||
Blade number | 7 | 11 | ||
Tip clearance (mm) | 1.5 | 0.9 | ||
Frame thickness (mm) | 24.8 | 15.49 |
Fan Specification | FAN13 | FAN14 | ||
---|---|---|---|---|
Chord length root (mm) | 11.5 | 12.17 | ||
Chord length tip (mm) | 16.5 | 16 | ||
Pitch angle | 60.4 | 39.86 | ||
Twist angle | 18.6 | 6.56 | ||
Impeller diameter (mm) | 65 | 74.3 | ||
Hub OD (mm) | 31.5 | 34.24 | ||
Blade number | 9 | 11 | ||
Tip clearance (mm) | 1.5 | 0.9 | ||
Frame thickness (mm) | 15.2 | 15.49 | ||
Fan specification | FAN15 | FAN16 | ||
Chord length root (mm) | 13.5 | 12.17 | ||
Chord length tip (mm) | 18.5 | 16 | ||
Pitch angle | 40 | 39.86 | ||
Twist angle | 12.5 | 6.56 | ||
Impeller diameter (mm) | 55 | 74.3 | ||
Hub OD (mm) | 54.6 | 34.24 | ||
Blade number | 7 | 11 | ||
Tip clearance (mm) | 1 | 0.9 | ||
Frame thickness (mm) | 15.2 | 15.49 | ||
Fan specification | FAN17 | FAN18 | ||
Chord length root (mm) | 22 | 15 | ||
Chord length tip (mm) | 25 | 18.5 | ||
Pitch angle | 43 | 68.9 | ||
Twist angle | 6.13 | 11 | ||
Impeller diameter (mm) | 75.3 | 74.5 | ||
Hub OD (mm) | 37.5 | 32.24 | ||
Blade number | 7 | 7 | ||
Tip clearance (mm) | 2 | 1.5 | ||
Frame thickness (mm) | 25.3 | 24.95 |
Fan Specification | FAN19 | |
---|---|---|
Chord length root (mm) | 19 | |
Chord length tip (mm) | 30 | |
Pitch angle | 46 | |
Twist angle | 15 | |
Impeller diameter (mm) | 110 | |
Hub OD (mm) | 39.6 | |
Blade number | 7 | |
Tip clearance (mm) | 2.3 | |
Frame thickness (mm) | 25 |
Performance Evaluation | Flowrate Model | Static Pressure Model | ||
---|---|---|---|---|
Training | Testing | Training | Testing | |
R2 | 0.994 | 0.991 | 0.998 | 0.997 |
MAE | 0.000 | 0.001 | 0.420 | 0.565 |
RMSE | 0.001 | 0.001 | 0.613 | 0.818 |
Parameters | Range |
---|---|
Chord length root | 20~50 mm (interval 1 mm) |
Chord length tip | 25~60 mm (interval 1 mm) |
Pitch angle | 35~50° (interval 1°) |
Twist angle | 0~20° (interval 1°) |
Impeller diameter | 40/50/60/70/80/92/120/140 mm |
Hub OD | 25~60 mm (interval 5 mm) |
Blade number | 3/5/7/9/11 |
Tip clearance | 1~2.5 mm (interval 0.5 mm) |
Frame thickness | 15/20/25/38 (mm) |
Operating point | Static pressure (Pa) | 50 |
Flowrate (m3/s) | 0.01 | |
Rotating speed (RPM) | 6000 | |
Optimum design parameter | Chord length root (mm) | 22 |
Chord length tip (mm) | 40 | |
Pitch angle (°) | 42 | |
Twist angle (°) | 7 | |
Impeller diameter (mm) | 80 | |
Hub OD (mm) | 30 | |
Blade number | 5 | |
Tip clearance (mm) | 2 | |
Frame thickness (mm) | 38 | |
Assessment | Predicted static pressure (Pa) | 49.96 |
Static pressure error (%) | 0.1 | |
0.50 | ||
0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-L.; Nisa, E.C.; Kuan, Y.-D.; Luo, W.-J.; Feng, C.-C. Combining Deep Neural Network with Genetic Algorithm for Axial Flow Fan Design and Development. Processes 2023, 11, 122. https://doi.org/10.3390/pr11010122
Liu Y-L, Nisa EC, Kuan Y-D, Luo W-J, Feng C-C. Combining Deep Neural Network with Genetic Algorithm for Axial Flow Fan Design and Development. Processes. 2023; 11(1):122. https://doi.org/10.3390/pr11010122
Chicago/Turabian StyleLiu, Yu-Ling, Elsa Chaerun Nisa, Yean-Der Kuan, Win-Jet Luo, and Chien-Chung Feng. 2023. "Combining Deep Neural Network with Genetic Algorithm for Axial Flow Fan Design and Development" Processes 11, no. 1: 122. https://doi.org/10.3390/pr11010122
APA StyleLiu, Y.-L., Nisa, E. C., Kuan, Y.-D., Luo, W.-J., & Feng, C.-C. (2023). Combining Deep Neural Network with Genetic Algorithm for Axial Flow Fan Design and Development. Processes, 11(1), 122. https://doi.org/10.3390/pr11010122