Efficient Removal of Dyes from Aqueous Solution by Adsorption on L-Arginine-Modified Mesoporous Silica Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Adsorbent
2.2.1. Mesoporous Silica Nanoparticles (MSNPs) Preparation
2.2.2. MSNPs Modified with L-Arginine (Ar-MSNPs)
2.3. Characterization
2.4. Adsorption Studies
2.4.1. Batch Adsorption
2.4.2. Adsorption Isotherms
2.4.3. Adsorption Kinetics
- Pseudo first-order model:
- Pseudo second-order model:
- Intraparticle diffusion model:
3. Results and Discussion
3.1. General Characterization
3.2. Adsorption Studies
3.2.1. Effect of pH
3.2.2. Adsorption Isotherms
3.3. Kinetics
3.3.1. Effect of Initial Concentration of Dye Solutions
3.3.2. Adsorption Models
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gui, W.; Lin, J.; Liang, Y.; Qu, Y.; Zhang, L.; Zhang, H.; Li, X. A two-step strategy for high-efficiency fluorescent dye removal from wastewater. Npj Clean Water 2019, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, C.; Kumar, M.; Tyagi, V.K.; Mohapatra, P.K. Proclivities for prevalence and treatment of antibiotics in the ambient water: A review. Npj Clean Water 2020, 3, 42. [Google Scholar] [CrossRef]
- Yang, J.; Shojaei, S.; Shojaei, S. Removal of drug and dye from aqueous solutions by graphene oxide: Adsorption studies and chemometrics methods. Npj Clean Water 2022, 5, 5. [Google Scholar] [CrossRef]
- Ali, S.S.; Sun, J.; Koutra, E.; El-Zawawy, N.; Elsamahy, T.; El-Shetehy, M. Construction of a novel cold-adapted oleaginous yeast consortium valued for textile azo dye wastewater processing and biorefinery. Fuel 2021, 285, 119050. [Google Scholar] [CrossRef]
- Maged, A.; Iqbal, J.; Kharbish, S.; Ismael, I.S.; Bhatnagar, A. Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies. J. Hazard. Mater. 2020, 384, 121320. [Google Scholar] [CrossRef] [PubMed]
- Arık, M.; Çelebi, N.; Onganer, Y. Fluorescence quenching of fluorescein with molecular oxygen in solution. J. Photochem. Photobiol. A Chem. 2005, 170, 105–111. [Google Scholar] [CrossRef]
- Toprak, M.; Aydın, B.M.; Arık, M.; Onganer, Y. Fluorescence quenching of fluorescein by Merocyanine 540 in liposomes. J. Lumin. 2011, 131, 2286–2289. [Google Scholar] [CrossRef]
- Martin, M.M.; Lindqvist, L. The pH dependence of fluorescein fluorescence. J. Lumin. 1975, 10, 381–390. [Google Scholar] [CrossRef]
- Sjöback, R.; Nygren, J.; Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, L7–L21. [Google Scholar] [CrossRef]
- Silva, D.L.; Coutinho, K.; Canuto, S. Electronic spectroscopy of biomolecules in solution: Fluorescein dianion in water. Mol. Phys. 2010, 108, 3125–3130. [Google Scholar] [CrossRef]
- Chen, X.; Pradhan, T.; Wang, F.; Kim, J.S.; Yoon, J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev. 2012, 112, 1910–1956. [Google Scholar] [CrossRef] [PubMed]
- Neupane, S.; Ramesh, S.; Gandhimathi, R.; Nidheesh, P. Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution. Desalin. Water Treat. 2015, 54, 2041–2054. [Google Scholar] [CrossRef]
- Lim, L.B.; Priyantha, N.; Zehra, T.; Then, C.W.; Chan, C.M. Adsorption of crystal violet dye from aqueous solution onto chemically treated Artocarpus odoratissimus skin: Equilibrium, thermodynamics, and kinetics studies. Desalin. Water Treat. 2016, 57, 10246–10260. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, D.; Chang, Z.; Zhang, L. Adsorption of crystal violet onto amino silica: Optimization, equilibrium, and kinetic studies. Desalin. Water Treat. 2014, 52, 6113–6121. [Google Scholar] [CrossRef]
- Saeed, A.; Sharif, M.; Iqbal, M. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. J. Hazard. Mater. 2010, 179, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Gupta, S.; Singh, A.K.; Sinha, S. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 2011, 186, 1462–1473. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, J.-Q.; Petri, M. Preliminarily comparative performance of removing bisphenol-S by ferrate oxidation and ozonation. Npj Clean Water 2021, 4, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.; Zhu, W.; Su, D.; Sang, Z.; Yan, X.; Li, S.; Liang, J.; Dou, S.X. A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal. Carbon 2020, 160, 88–97. [Google Scholar] [CrossRef]
- Mi, Y.-F.; Xu, G.; Guo, Y.-S.; Wu, B.; An, Q.-F. Development of antifouling nanofiltration membrane with zwitterionic functionalized monomer for efficient dye/salt selective separation. J. Membr. Sci. 2020, 601, 117795. [Google Scholar] [CrossRef]
- Arabkhani, P.; Asfaram, A. Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J. Hazard. Mater. 2020, 384, 121394. [Google Scholar] [CrossRef]
- Arabkhani, P.; Asfaram, A.; Ateia, M. Easy-to-prepare graphene oxide/sodium montmorillonite polymer nanocomposite with enhanced adsorption performance. J. Water Process Eng. 2020, 38, 101651. [Google Scholar] [CrossRef]
- Sharifpour, E.; Ghaedi, M.; Asfaram, A.; Farsadrooh, M.; Dil, E.A.; Javadian, H. Modeling and optimization of ultrasound-assisted high performance adsorption of Basic Fuchsin by starch-capped zinc selenide nanoparticles/AC as a novel composite using response surface methodology. Int. J. Biol. Macromol. 2020, 152, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Sivalingam, S.; Sen, S. Rice husk ash derived nanocrystalline ZSM-5 for highly efficient removal of a toxic textile dye. J. Mater. Res. Technol. 2020, 9, 14853–14864. [Google Scholar] [CrossRef]
- Hamid, S.A.; Shahadat, M.; Ballinger, B.; Azha, S.F.; Ismail, S.; Ali, S.W.; Ahammad, S.Z. Role of clay-based membrane for removal of copper from aqueous solution. J. Saudi Chem. Soc. 2020, 24, 785–798. [Google Scholar] [CrossRef]
- Alotaibi, K.M.; Almethen, A.A.; Beagan, A.M.; Al-Swaidan, H.M.; Ahmad, A.; Bhawani, S.A.; Alswieleh, A.M. Quaternization of Poly (2-diethyl aminoethyl methacrylate) Brush-Grafted Magnetic Mesoporous Nanoparticles Using 2-Iodoethanol for Removing Anionic Dyes. Appl. Sci. 2021, 11, 10451. [Google Scholar] [CrossRef]
- Alswieleh, A.M. Cysteine-and glycine-functionalized mesoporous silica as adsorbents for removal of paracetamol from aqueous solution. Int. J. Environ. Anal. Chem. 2021, 1–12. [Google Scholar] [CrossRef]
- Alswieleh, A.M. Remediation of cationic and anionic dyes from water by histidine modified mesoporous silica. Int. J. Environ. Anal. Chem. 2021, 1–13. [Google Scholar] [CrossRef]
- Beagan, A.; Alotaibi, K.; Almakhlafi, M.; Algarabli, W.; Alajmi, N.; Alanazi, M.; Alwaalah, H.; Alharbi, F.; Alshammari, R.; Alswieleh, A. Amine and sulfonic acid functionalized mesoporous silica as an effective adsorbent for removal of methylene blue from contaminated water. J. King Saud Univ.-Sci. 2022, 34, 101762. [Google Scholar] [CrossRef]
- Almethen, A.A.; Alotaibi, K.M.; Alhumud, H.S.; Alswieleh, A.M. Highly Efficient and Rapid Removal of Methylene Blue from Aqueous Solution Using Folic Acid-Conjugated Dendritic Mesoporous Silica Nanoparticles. Processes 2022, 10, 705. [Google Scholar] [CrossRef]
- Beagan, A.M. Investigating Methylene Blue Removal from Aqueous Solution by Cysteine-Functionalized Mesoporous Silica. J. Chem. 2021, 2021, 8839864. [Google Scholar] [CrossRef]
- Naseem, T.; Baig, M.M.; Warsi, M.F.; Hussain, R.; Agboola, P.O.; Waseem, M. Mesoporous silica prepared via a green route: A comparative study for the removal of crystal violet from wastewater. Mater. Res. Express 2020, 8, 015005. [Google Scholar] [CrossRef]
- Hasan, I.; BinSharfan, I.I.; Khan, R.A.; Alsalme, A. L-Ascorbic Acid-g-Polyaniline Mesoporous Silica Nanocomposite for Efficient Removal of Crystal Violet: A Batch and Fixed Bed Breakthrough Studies. Nanomaterials 2020, 10, 2402. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.V.; Sailaja, P.; Srimurali, M.; Karthikeyan, J. Color removal of monoazo acid dye from aqueous solution by adsorption and chemical coagulation. Environ. Eng. Policy 1998, 1, 149–154. [Google Scholar] [CrossRef]
- Wong, Y.; Szeto, Y.; Cheung, W.; McKay, G. Adsorption of acid dyes on chitosan—Equilibrium isotherm analyses. Proces. Biochem. 2004, 39, 695–704. [Google Scholar] [CrossRef]
- Muthukumar, M.; Karuppiah, M.T.; Raju, G.B. Electrochemical removal of CI Acid orange 10 from aqueous solutions. Sep. Purif. Technol. 2007, 55, 198–205. [Google Scholar] [CrossRef]
- Alswieleh, A.M. Aspartic Acid-and Glycine-Functionalized Mesoporous Silica as an Effective Adsorbent to Remove Methylene Blue from Contaminated Water. J. Chem. 2022, 2022, 5375815. [Google Scholar] [CrossRef]
- GG, K.D.; Sanyal, B.; Ghosh, S.K. Radiation response studies of acetonitrile solutions of crystal violet and leuco crystal violet. Radiat. Phys. Chem. 2020, 177, 109068. [Google Scholar]
- Panchompoo, J.; Aldous, L.; Baker, M.; Wallace, M.I.; Compton, R.G. One-step synthesis of fluorescein modified nano-carbon for Pd (II) detection via fluorescence quenching. Analyst 2012, 137, 2054–2062. [Google Scholar] [CrossRef]
- Malik, P. Dye removal from wastewater using activated carbon developed from sawdust: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2004, 113, 81–88. [Google Scholar] [CrossRef]
- Hu, L.; Yang, Z.; Wang, Y.; Li, Y.; Fan, D.; Wu, D.; Wei, Q.; Du, B. Facile preparation of water-soluble hyperbranched polyamine functionalized multiwalled carbon nanotubes for high-efficiency organic dye removal from aqueous solution. Sci. Rep. 2017, 7, 3611. [Google Scholar] [CrossRef]
- Varlikli, C.; Bekiari, V.; Kus, M.; Boduroglu, N.; Oner, I.; Lianos, P.; Lyberatos, G.; Icli, S. Adsorption of dyes on Sahara desert sand. J. Hazard. Mater. 2009, 170, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J. Colloid Interface Sci. 2005, 283, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, L.; Liu, J.; Liu, X.; Chen, C.; Li, G.; Meng, Y. Graphene oxides cross-linked with hyperbranched polyethylenimines: Preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead (II) ions. Chem. Eng. J. 2016, 285, 698–708. [Google Scholar] [CrossRef] [Green Version]
BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) | |
---|---|---|---|
CTAB free MSNPs | 931 | 1.29 | 5.6 |
Ar-MSNPs | 627 | 0.95 | 4.8 |
Dye | qe (Experimental) (mg.g−1) | qm (mg.g−1) | b (dm3.mg−1) | RL | R2 |
---|---|---|---|---|---|
Fl | 37 | 58 | 1.01 | 0.098 | 0.945 |
CV | 128 | 201 | 0.41 | 0.087 | 0.951 |
Dye | qe (Experimental) (mg.g−1) | qm (mg.g−1) | b (dm3.mg−1) | R2 |
---|---|---|---|---|
Fl | 37 | 61 | 0.83 | 0.883 |
CV | 128 | 183 | 0.85 | 0.978 |
Pseudo First Order | ||
---|---|---|
k1 (min−1) | R2 | |
Fl removed by Ar-MSNPs | −0.008 | 0.14 |
CV removed by Ar-MSNPs | −0.015 | 0.58 |
Pseudo Second Order | ||
k2 (g.mg−1.min−1) | R2 | |
Fl removed by Ar-MSNPs | 0.130 | 0.98 |
CV removed by Ar-MSNPs | 0.065 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alswieleh, A.M. Efficient Removal of Dyes from Aqueous Solution by Adsorption on L-Arginine-Modified Mesoporous Silica Nanoparticles. Processes 2022, 10, 1079. https://doi.org/10.3390/pr10061079
Alswieleh AM. Efficient Removal of Dyes from Aqueous Solution by Adsorption on L-Arginine-Modified Mesoporous Silica Nanoparticles. Processes. 2022; 10(6):1079. https://doi.org/10.3390/pr10061079
Chicago/Turabian StyleAlswieleh, Abdullah M. 2022. "Efficient Removal of Dyes from Aqueous Solution by Adsorption on L-Arginine-Modified Mesoporous Silica Nanoparticles" Processes 10, no. 6: 1079. https://doi.org/10.3390/pr10061079
APA StyleAlswieleh, A. M. (2022). Efficient Removal of Dyes from Aqueous Solution by Adsorption on L-Arginine-Modified Mesoporous Silica Nanoparticles. Processes, 10(6), 1079. https://doi.org/10.3390/pr10061079