A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation
Abstract
:1. Introduction
2. Lipases
3. Yarrowia lipolytica
3.1. General Features of Yarrowia lipolytica
3.2. Regulation and Characteristics of Lipases from Yarrowia lipolytica
Lipase and Production System | Activators | Inhibitors | pH and Temperature (Optimal) | Localization and Glycosylation Sites | Solvent Stability | Substrate Specificity | References |
---|---|---|---|---|---|---|---|
Lip2p, SmF | Ca+2, Mg+2, bile salt | Zn+2, Ni+2, Cu+2, oleic acid | 6–10, 37 °C (most reported), 55 °C | Cell wall (growth phase) and extracellular (end of growth phase), 2 sites (N113 and N134) | 90% in acetone, methanol, ethanol, isopropanol, DMSO (10%), 60% in methanol (20%) and DMSO 95%) | C8:0 and C18:1 triglyceride, C12:16 methyl fatty acid | [26,57,58,59] |
Lip7p, SmF | - | - | - | Cell wall (phosphate buffer extraction), 1 site at aa 140 | - | p-NPC6 | [26] |
Lip8p, SmF | Bile salts | - | 7.5–9.5, <30 °C | Cell wall (phosphate buffer extraction), 1 site at aa 140 | - | p-NPC8, p-NPC10, and p-NPC12 (after enzyme engineering) | [26,64,67] |
CBLF, SmF | - | - | 7 (37 °C) | bound to cell membrane/wall | 80% in 10% v/v) in ethanol and acetone | p-NPC16 | [60,62] |
SB, SSF | Ca+2 (2 mM) | Ca+2 and Mn+2 (>20 mM), Hg+2, Fe+3, EDTA | 7 (50 °C), 8 (37 °C) | - | Stable (at 9% v/v) in hydrophobic solvents, glycerol, methanol, ethanol, acetone, acetonitrile, ether, DMSO; Stable (at 30% v/v) in hexane and heptane | C8:0 triglyceride, coconut oil, and palm kernel oil | [63] |
4. Solid-State Fermentation (SSF)
4.1. Lipase Production by Yarrowia lipolytica in Solid-State Fermentation
Y. lipolytica Strain | Support/Substrate | Maximum Activity | Product | Temperature (°C) | Initial Moisture Content (%) | Particle Diameter (mm) | Ref. |
---|---|---|---|---|---|---|---|
CECT 1240 (ATCC 18942) | Barley bran and Triturated nut | 23 kU l | Lipase | 30 | 90 | - | [74] |
NCIM 3589 | Sugarcane bagasse, wheat bran, and rice bran | 9.3 U/gds | Lipase | 30 | 80 | - | [75] |
NCIM 3589 | Niger seed oil cake (Guizotia abyssinica) | 26.42 U/gds | Lipase | 30 | 60 | 2 | [76] |
NCIM 3589 | Palm Kernal cake (Elaeis guineensis) | 18.58 U/gds | Lipase | 30 | 70 | 2 | [77] |
NCIM 3589 | mustard oil cake (Brassica napus) | 57.89 U/gds | Lipase | 30 | 50 | 2 | [78] |
NRRL Y-1095 | Olive mill wastewater and crude olive oil cake | 850 IU dm−3 | Lipase | 30 | 55 | 0.2–0.5 | [79] |
NRRL Y-1095 | Canola meal, almond meal, coconut oil cake, soybean meal (better producer), barley bran, and wheat bran | ~0.6 U | Lipase | 30 | - | 1.5 | [83] |
IMUFRJ 50682 | Cottonseed cake; and synergism of soybean bran + its sludge (better producer) | 139.0 U/g | Lipase | 28 | 58 | <1.18 | [80] |
IMUFRJ 50682 | Two-phase olive mill waste supplemented with a mineral nitrogen source | 486.0 U/g | Lipase | 28 | 53 | <2 | [81] |
IMUFRJ 50682 | Soybean meal | 93.9 U/g | Lipase | 28 | 55 | <1.18 | [82] |
M53 | Buckwheat husk and okara | 22.1 U/gds | Lipase | 30 | 70 | - | [84] |
IMUFRJ 50682 | Soybean bran | 16 U/g | Lipase | 28 | 55 | <1.18 | [85] |
IMUFRJ 50682 | Soybean meal | 106.7 U/g | Lipase | 28 | 55 | <1.18 | [63] |
IMUFRJ 50682 | Watermelon peels | 75.22 U/g | Lipase and esterase | 28 | 55 | <1.18 | [86] |
4.2. Solid-State Fermentation, Substrates, and Bioreactors
4.3. Cell Analysis in Solid-State Fermentations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- GVR. Enzymes Market Size, Share & Trends Analysis Report by Application (Industrial Enzymes, Specialty Enzymes), By Product (Carbohydrase, Proteases, Lipases), By Source, By Region, And Segment Forecasts, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/enzymes-industry (accessed on 27 October 2021).
- Guerrand, D. Lipases industrial applications: Focus on food and agroindustries. OCL 2017, 24, D403. [Google Scholar] [CrossRef]
- Lemes, A.C.; Silvério, S.C.; Rodrigues, S.; Rodrigues, L.R. Integrated strategy for purification of esterase from Aureobasidium pullulans. Sep. Purif. Technol. 2019, 209, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Stauch, B.; Fisher, S.J.; Cianci, M. Open and closed states of Candida antarctica lipase B: Protonation and the mechanism of interfacial activation. J. Lipid Res. 2015, 56, 2348–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, S.; Faryad, A.; Ataa, A.; Joyia, F.A.; Parvaiz, A. Microbial lipase production: A deep insight into the recent advances of lipase production and purification techniques. Biotechnol. Appl. Biochem. 2020, 68, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.D. Recent advances in enzyme promiscuity. Sustain. Chem. Process. 2016, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Meunchan, M.; Michely, S.; Devillers, H.; Nicaud, J.-M.; Marty, A.; Neuvéglise, C. Comprehensive Analysis of a Yeast Lipase Family in the Yarrowia Clade. PLoS ONE 2015, 10, e0143096. [Google Scholar] [CrossRef]
- Nicaud, J.-M. Yarrowia lipolytica. Yeast 2012, 29, 409–418. [Google Scholar] [CrossRef]
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding Food Loss and Waste-Why Are We Losing and Wasting Food? Foods 2019, 8, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castilho, L.R.; Polato, C.M.S.; Baruque, E.A.; Sant’Anna, G.L.; Freire, D.M.G. Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem. Eng. J. 2000, 4, 239–247. [Google Scholar] [CrossRef]
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; Vandenberghe, L.P.D.S. Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Krishania, M.; Sindhu, R.; Binod, P.; Ahluwalia, V.; Kumar, V.; Sangwan, R.S.; Pandey, A. Chapter 5—Design of Bioreactors in Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 83–96. [Google Scholar]
- Manan, M.; Webb, C. Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing. J. Appl. Biotechnol. Bioeng. 2017, 4, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Salihu, A.; Alam, M.Z.; AbdulKarim, M.I.; Salleh, H.M. Lipase production: An insight in the utilization of renewable agricultural residues. Resour. Conserv. Recycl. 2012, 58, 36–44. [Google Scholar] [CrossRef]
- Nascimento, F.V.; de Castro, A.M.; Secchi, A.R.; Coelho, M.A.Z. Insights into media supplementation in solid-state fermentation of soybean hulls by Yarrowia lipolytica: Impact on lipase production in tray and insulated packed-bed bioreactors. Biochem. Eng. J. 2021, 166, 107866. [Google Scholar] [CrossRef]
- De-Pretto, C.; Giordano, R.D.L.C.; Tardioli, P.W.; Costa, C.B.B. Possibilities for Producing Energy, Fuels, and Chemicals from Soybean: A Biorefinery Concept. Waste Biomass Valorization 2018, 9, 1703–1730. [Google Scholar] [CrossRef]
- Loman, A.A.; Ju, L.-K. Soybean carbohydrate as fermentation feedstock for production of biofuels and value-added chemicals. Process Biochem. 2016, 51, 1046–1057. [Google Scholar] [CrossRef]
- Yang, S.; Lio, J.; Wang, T. Evaluation of enzyme activity and fiber content of soybean cotyledon fiber and distiller’s dried grains with solubles by solid state fermentation. Appl. Biochem. Biotechnol. 2012, 167, 109–121. [Google Scholar] [CrossRef]
- Julia, B.M.; Belén, A.M.; Georgina, B.; Beatriz, F. Potential use of soybean hulls and waste paper as supports in SSF for cellulase production by Aspergillus niger. Biocatal. Agric. Biotechnol. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Brijwani, K.; Oberoi, H.S.; Vadlani, P.V. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 2010, 45, 120–128. [Google Scholar] [CrossRef]
- Brijwani, K.; Vadlani, P.V. Cellulolytic Enzymes Production via Solid-State Fermentation: Effect of Pretreatment Methods on Physicochemical Characteristics of Substrate. Enzyme Res. 2011, 2011, 860134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hu, B. Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Appl. Biochem. Biotechnol. 2012, 166, 1034–1046. [Google Scholar] [CrossRef]
- Simu, S.Y.; Castro-Aceituno, V.; Lee, S.; Ahn, S.; Lee, H.K.; Hoang, V.A.; Yang, D.C. Fermentation of soybean hull by Monascus pilosus and elucidation of its related molecular mechanism involved in the inhibition of lipid accumulation. An in sílico and in vitro approach. J. Food Biochem. 2017, 42, e12442. [Google Scholar] [CrossRef]
- Deveci, T.; Ünyayar, A.; Mazmanci, M.A. Production of Remazol Brilliant Blue R decolourising oxygenase from the culture filtrate of Funalia trogii ATCC 200800. J. Mol. Catal. B Enzym. 2004, 30, 25–32. [Google Scholar] [CrossRef]
- López, D.N.; Galante, M.; Ruggieri, G.; Piaruchi, J.; Dib, M.E.; Duran, N.M.; Lombardi, J.; de Sanctis, M.; Boeris, V.; Risso, P.H.; et al. Peptidase from Aspergillus niger NRRL 3: Optimization of its production by solid-state fermentation, purification and characterization. LWT 2018, 98, 485–491. [Google Scholar] [CrossRef]
- Fickers, P.; Marty, A.; Nicaud, J.M. The lipases from Yarrowia lipolytica: Genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv. 2011, 29, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.; Miller, R. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 2009, 147–148, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.L.; Balcão, V.M.; Malcata, F.X. Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzym. Microb. Technol. 2000, 27, 187–204. [Google Scholar] [CrossRef]
- Kapoor, M.; Gupta, M. Lipase Promiscuity and its biochemical applications. Process Biochem. 2012, 47, 555–569. [Google Scholar] [CrossRef]
- Bordes, F.; Barbe, S.; Escalier, P.; Mourey, L.; André, I.; Marty, A.; Tranier, S. Exploring the conformational states and rearrangements of Yarrowia lipolytica Lipase. Biophys. J. 2010, 99, 2225–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, F.I.; Lan, D.; Durrani, R.; Huan, W.; Zhao, Z.; Wang, Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Front. Bioeng. Biotechnol. 2017, 5, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skjold-Jørgensen, J.; Vind, J.; Svendsen, A.; Bjerrum, M.J. Understanding the activation mechanism of Thermomyces lanuginosus lipase using rational design and tryptophan-induced fluorescence quenching. Eur. J. Lipid Sci. Technol. 2016, 118, 1644–1660. [Google Scholar] [CrossRef]
- Deems, R.A. Interfacial Enzyme Kinetics at the Phospholipid/Water Interface: Practical Considerations. Anal. Biochem. 2000, 287, 1–16. [Google Scholar] [CrossRef]
- Yao, X.; Wang, N.; Fang, Y.; Phillips, G.O.; Jiang, F.; Hu, J.; Lu, J.; Xu, Q.; Tian, D. Impact of surfactants on the lipase digestibility of gum arabic-stabilized O/W emulsions. Food Hydrocoll. 2013, 33, 393–401. [Google Scholar] [CrossRef]
- Berg, O.G.; Cajal, Y.; Butterfoss, G.L.; Grey, R.L.; Alsina, M.A.; Yu, B.Z.; Jain, M.K. Interfacial activation of triglyceride lipase from Thermomyces (Humicola) lanuginosa: Kinetic parameters and a basis for control of the lid. Biochemistry 1998, 37, 6615–6627. [Google Scholar] [CrossRef] [PubMed]
- Barth, G. Yarrowia Lipolytica; Springer: Berlin/Heidelberg, Germany, 2013; Volume 25, p. 268. [Google Scholar]
- Wolf, K. Nonconventional Yeasts in Biotechnology: A Handbook; Springer: Berlin/Heidelberg, Germany, 1996; Volume 1, p. 619. [Google Scholar]
- Barth, G. Yarrowia Lipolytica: Genetics, Genomics, and Physiology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 24, p. 187. [Google Scholar]
- Barth, G.; Gaillardin, C. Yarrowia lipolytica. In Nonconventional Yeasts in Biotechnology; Wolf, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 10, pp. 313–388. [Google Scholar]
- Timoumi, A.; Guillouet, S.E.; Molina-Jouve, C.; Fillaudeau, L.; Gorret, N. Impacts of environmental conditions on product formation and morphology of Y. lipolytica. Appl. Microbiol. Biotechnol. 2018, 102, 3831–3848. [Google Scholar] [CrossRef]
- Braga, A.; Mesquita, D.P.; Amaral, A.L.; Ferreira, E.C.; Belo, I. Aroma production by Yarrowia lipolytica in airlift and stirred tank bioreactors: Differences in yeast metabolism and morphology. Biochem. Eng. J. 2015, 93, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yang, X.; Gao, S.; Wang, H.; Lin, C.S.K. High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica. Bioresour. Technol. 2017, 225, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Vandermies, M.; Kar, T.; Carly, F.; Nicaud, J.-M.; Delvigne, F.; Fickers, P. Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor. Appl. Microbiol. Biotechnol. 2018, 102, 5473–5482. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Campo, F.M.; Domínguez, A. Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr. Microbiol. 2001, 43, 429–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Herrera, J.; Sentandreu, R. Different effectors of dimorphism in Yarrowia lipolytica. Arch. Microbiol. 2002, 178, 477–483. [Google Scholar] [CrossRef]
- Fickers, P.; Benetti, P.H.; Waché, Y.; Marty, A.; Mauersberger, S.; Smit, M.S.; Nicaud, J.M. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 2005, 5, 527–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spagnuolo, M.; Shabbir Hussain, M.; Gambill, L.; Blenner, M. Alternative Substrate Metabolism in Yarrowia lipolytica. Front. Microbiol. 2018, 9, 1077. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Nicaud, J.-M. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. Trends Biotechnol. 2016, 34, 798–809. [Google Scholar] [CrossRef]
- Larroude, M.; Rossignol, T.; Nicaud, J.M.; Ledesma-Amaro, R. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol. Adv. 2018, 36, 2150–2164. [Google Scholar] [CrossRef]
- Aloulou, A.; Rodriguez, J.A.; Puccinelli, D.; Mouz, N.; Leclaire, J.; Leblond, Y.; Carrière, F. Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim. Biophys. Acta 2007, 1771, 228–237. [Google Scholar] [CrossRef]
- Pignède, G.; Wang, H.; Fudalej, F.; Gaillardin, C.; Seman, M.; Nicaud, J.M. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J. Bacteriol. 2000, 182, 2802–2810. [Google Scholar] [CrossRef] [Green Version]
- De-Pourcq, K.; Vervecken, W.; Dewerte, I.; Valevska, A.; Van Hecke, A.; Callewaert, N. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microb. Cell Factories 2012, 11, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fickers, P.; Nicaud, J.M.; Destain, J.; Thonart, P. Involvement of hexokinase Hxk1 in glucose catabolite repression of LIP2 encoding extracellular lipase in the yeast Y. lipolytica. Curr. Microbiol. 2005, 50, 133–137. [Google Scholar] [CrossRef]
- Desfougères, T.; Haddouche, R.; Fudalej, F.; Neuvéglise, C.; Nicaud, J.M. SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica. FEMS Yeast Res. 2010, 10, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassi, H.; Delvigne, F.; Kar, T.; Nicaud, J.M.; Coq, A.M.; Steels, S.; Fickers, P. Deciphering how LIP2 and POX2 promoters can optimally regulate recombinant protein production in the yeast Yarrowia lipolytica. Microb. Cell Fact. 2016, 15, 159. [Google Scholar] [CrossRef] [PubMed]
- Turki, S.; Ayed, A.; Chalghoumi, N.; Weekers, F.; Thonart, P.; Kallel, H. An enhanced process for the production of a highly purified extracellular lipase in the non-conventional yeast Yarrowia lipolytica. Appl. Biochem. Biotechnol. 2010, 160, 1371–1385. [Google Scholar] [CrossRef]
- Pereira-Meirelles, F.V.; Rocha-Leão, M.H.; Sant’Anna, G.L., Jr. A stable lipase from Candida lipolytica: Cultivation conditions and crude enzyme characteristics. Appl. Biochem. Biotechnol. 1997, 63–65, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Meirelles, F.V.; Rocha-Leão, M.H.M.; Sant’Anna, G.L., Jr. Lipase location in Yarrowia lipolytica cells. Biotechnol. Lett. 2000, 22, 71–75. [Google Scholar] [CrossRef]
- Brígida, A.I.S. Imobilização De Lipases Utilizando Fibra Da Casca De Coco Verde Como Suporte Para Aplicações Industriais. Ph.D. Thesis, Chemical and Biochemical Process Technology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Fraga, J.L.; Penha, A.C.B.; Pereira, A.D.S.; Silva, K.A.; Akil, E.; Torres, A.G.; Amaral, P.F.F. Use of Yarrowia lipolytica Lipase Immobilized in Cell Debris for the Production of Lipolyzed Milk Fat (LMF). Int. J. Mol. Sci. 2018, 19, 3413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, J.L.; da Penha, A.C.B.; Akil, E.; Silva, K.A.; Amaral, P.F.F. Catalytic and physical features of a naturally immobilized Yarrowia lipolytica lipase in cell debris (LipImDebri) displaying high thermostability. 3 Biotech 2020, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Nunes, P.M.B.; Fraga, J.L.; Ratier, R.B.; Rocha-Leão, M.H.M.; Brígida, A.I.S.; Fickers, P.; Amaral, P.F.F. Waste soybean frying oil for the production, extraction, and characterization of cell-wall-associated lipases from Yarrowia lipolytica. Bioprocess Biosyst. Eng. 2021, 44, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.E.C.; Ribeiro, B.D.; Coelho, M.A.Z. Characterization and Application of Yarrowia lipolytica Lipase Obtained by Solid-State Fermentation in the Synthesis of Different Esters Used in the Food Industry. Appl. Biochem. Biotechnol. 2019, 189, 933–959. [Google Scholar] [CrossRef]
- Kamoun, J.; Schué, M.; Messaoud, W.; Baignol, J.; Point, V.; Mateos-Diaz, E.; Mansuelle, P.; Gargouri, Y.; Parsiegla, G.; Cavalier, J.F.; et al. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region. Biochim. Biophys. Acta 2015, 1851, 129–140. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, L.; Zhang, H.; Feng, W.; Tan, T. Lid Closure Mechanism of Yarrowia lipolytica Lipase in Methanol Investigated by Molecular Dynamics Simulation. J. Chem. Inf. Model. 2014, 54, 2033–2041. [Google Scholar] [CrossRef]
- Cao, H.; Jiang, Y.; Zhang, H.; Nie, K.; Lei, M.; Deng, L.; Wang, F.; Tan, T. Enhancement of methanol resistance of Yarrowia lipolytica lipase 2 using β-cyclodextrin as an additive: Insights from experiments and molecular dynamics simulation. Enzym. Microb. Technol. 2017, 96, 157–162. [Google Scholar] [CrossRef]
- Sheng, J.; Ji, X.F.; Wang, F.; Sun, M. Engineering of Yarrowia lipolytica lipase Lip8p by circular permutation to alter substrate and temperature characteristics. J. Ind. Microbiol. Biotechnol. 2014, 41, 757–762. [Google Scholar] [CrossRef]
- Augustyniak, W.; Brzezinska, A.A.; Pijning, T.; Wienk, H.; Boelens, R.; Dijkstra, B.W.; Reetz, M.T. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: Factors contributing to increased activity retention. Protein Sci. 2012, 21, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Fickers, P.; Fudalej, F.; Le Dall, M.T.; Casaregola, S.; Gaillardin, C.; Thonart, P.; Nicaud, J.M. Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet. Biol. 2005, 42, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Barnay-Verdier, S.; Boisramé, A.; Beckerich, J.M. Identification and characterization of two alpha-1,6-mannosyltransferases, Anl1p and Och1p, in the yeast Yarrowia lipolytica. Microbiology 2004, 150, 2185–2195. [Google Scholar] [CrossRef] [PubMed]
- Jolivet, P.; Bordes, F.; Fudalej, F.; Cancino, M.; Vignaud, C.; Dossat, V.; Burghoffer, C.; Marty, A.; Chardot, T.; Nicaud, J.M. Analysis of Yarrowia lipolytica extracellular lipase Lip2p glycosylation. FEMS Yeast Res. 2007, 7, 1317–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloulou, A.; Bénarouche, A.; Puccinelli, D.; Spinelli, S.; Cavalier, J.-F.; Cambillau, C.; Carrière, F. Biochemical and structural characterization of non-glycosylated Yarrowia lipolytica LIP2 lipase. Eur. J. Lipid Sci. Technol. 2013, 115, 429–441. [Google Scholar] [CrossRef]
- Try, S.; De-Coninck, J.; Voilley, A.; Chunhieng, T.; Waché, Y. Solid state fermentation for the production of y-decalactones by Yarrowia lipolytica. Process Biochem. 2018, 64, 9–15. [Google Scholar] [CrossRef]
- Domínguez, A.; Costas, M.; Longo, M.A.; Sanromán, A. A novel application of solid state culture: Production of lipases by Yarrowia lipolytica. Biotechnol. Lett. 2003, 25, 1225–1229. [Google Scholar] [CrossRef]
- Imandi, S.B.; Garapati, H.R. Lipase production by Yarrowia lipolytica NCIM 3589 in solid state fermentation using mixed substrate. Res. J. Microbiol. 2007, 2, 469–474. [Google Scholar]
- Imandi, S.; Karanam, S.; Rao, G. Optimization of Process Parameters for the Production of Lipase in Solid State Fermentation by Yarrowia Lipolytica from Niger Seed Oil Cake (Guizotia Abyssinica). J. Microb. Biochem. Technol. 2010, 2, 28–33. [Google Scholar] [CrossRef]
- Imandi, S.B.; Karanam, S.K.; Garapati, H.R. Optimization of media constituents for the production of lipase in solid state fermentation by Yarrowia lipolytica from palm Kernal cake (Elaeis guineensis). Adv. Biosci. Biotechnol. 2010, 1, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Imandi, S.B.; Karanam, S.K.; Garapati, H.R. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus). Braz. J. Microbiol. 2013, 44, 915–921. [Google Scholar] [CrossRef] [Green Version]
- Moftah, O.; Grbavčić, S.; Moftah, W.A.S.; Lukovic, N.D.; Prodanović, O.; Jakovetic, S.M.; Knežević-Jugović, Z. Lipase production by Yarrowia lipolytica using olive oil processing wastes as substrates. J. Serb. Chem. Soc. 2013, 78, 781–794. [Google Scholar] [CrossRef]
- Farias, M.A.; Valoni, E.A.; Castro, A.M.; Coelho, M.A. Lipase Production by Yarrowia lipolytica in Solid State Fermentation Using Different Agro Industrial Residues. Chem. Eng. Trans. 2014, 38, 301–306. [Google Scholar] [CrossRef]
- Lopes, V.; Farias, M.; Belo, I.; Coelho, M.A.Z. Nitrogen sources on tpomw valorization through solid state fermentation performed by Yarrowia Lipolytica. Braz. J. Chem. Eng. 2016, 33, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.E.C.; Farias, M.A.; Ribeiro, B.D.; Coelho, M.A.Z. Adding Value to Agro-industrial Co-products from Canola and Soybean Oil Extraction Through Lipase Production Using Yarrowia lipolytica in Solid-State Fermentation. Waste Biomass Valorization 2017, 8, 1163–1176. [Google Scholar] [CrossRef]
- Rehman, A.; Rasool, S.; Mukhtar, H.; Haq, I. Production of an extracellular lipase by Candida utilis NRRL-Y-900 using agro-industrial by-products. Turk. J. Biochem. 2014, 39, 140–149. [Google Scholar] [CrossRef]
- Liu, X.; Yu, X.; Zhang, T.; Wang, Z.; Xu, J.; Xia, J.; He, A.; Yan, Y.; Xu, J. Novel two-stage solid-state fermentation for erythritol production on okara-buckwheat husk medium. Bioresour. Technol. 2018, 266, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; Souza, C.E.C.; Valoni, E.; Castro, A.M.; Coelho, M.A.Z.; Ribeiro, B.D.; Henriques, C.A.; Langone, M.A.P. Biocatalytic esterification of fatty acids using a low-cost fermented solid from solid-state fermentation with Yarrowia lipolytica. 3 Biotech 2019, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Sales, J.C.S.; de Castro, A.M.; Ribeiro, B.D.; Coelho, M.A.Z. Supplementation of watermelon peels as an enhancer of lipase and esterase production by Yarrowia lipolytica in solid-state fermentation and their potential use as biocatalysts in poly(ethylene terephthalate) (PET) depolymerization reactions. Biocatal. Biotransform. 2020, 38, 457–468. [Google Scholar] [CrossRef]
- Couto, S.R.; Sanromán, M.Á. Application of solid-state fermentation to food industry—A review. J. Food Eng. 2006, 76, 291–302. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Bagewadi, Z.K.; Mulla, S.I.; Ninnekar, H.Z. Optimization of endoglucanase production from Trichoderma harzianum strain HZN11 by central composite design under response surface methodology. Biomass Convers. Biorefin. 2018, 8, 305–316. [Google Scholar] [CrossRef]
- Sánchez, Ó.J.; Montoya, S.; Vargas, L.M. Polysaccharide Production by Submerged Fermentation. In Polysaccharides: Bioactivity and Biotechnology; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–19. [Google Scholar]
- Costa, J.A.V.; Treichel, H.; Kumar, V.; Pandey, A. Chapter 1—Advances in Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–17. [Google Scholar]
- Castro, A.M.; Santos, A.F.; Kachrimanidou, V.; Koutinas, A.A.; Freire, D.M.G. Chapter 10—Solid-State Fermentation for the Production of Proteases and Amylases and Their Application in Nutrient Medium Production. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–210. [Google Scholar]
- Lemes, A.C.; Egea, M.B.; Oliveira-Filho, J.G.D.; Gautério, G.V.; Ribeiro, B.D.; Coelho, M.A.Z. Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Front. Bioeng. Biotechnol. 2022, 9, 1–18. [Google Scholar] [CrossRef]
- Fleuri, L.F.; Novelli, P.K.; Delgado, C.H.O.; Pivetta, M.R.; Pereira, M.S.; Arcuri, M.L.C.; Capoville, B.L. Biochemical characterisation and application of lipases produced by Aspergillus sp. on solid-state fermentation using three substrates. Int. J. Food Sci. 2014, 49, 2585–2591. [Google Scholar] [CrossRef]
- Almeida, A.F.; Dias, K.B.; Silva, A.C.C.; Terrasan, C.R.F.; Tauk-Tornisielo, S.M.; Carmona, E.C. Agroindustrial Wastes as Alternative for Lipase Production by Candida viswanathii under Solid-State Cultivation: Purification, Biochemical Properties, and Its Potential for Poultry Fat Hydrolysis. Enzym. Res. 2016, 2016, 1353497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damaso, C.T.D.; Passianoto, M.A.; Freitas, S.C.; Freire, D.M.G.; Lago, R.C.A.; Couri, S. Utilization of agroindustrial residues for lipase production by solid-state fermentation. Braz. J. Microbiol. 2008, 39, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Lemes, A.C.; Sala, L.; Ores, J.C.; Braga, A.R.; Egea, M.B.; Fernandes, K.F. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste. Int. J. Mol. Sci. 2016, 17, 950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemes, A.C.; Alvares, G.T.; Egea, M.B.; Brandelli, A.; Kalil, S.J. Simultaneous production of proteases and antioxidant compounds from agro-industrial by-products. Bioresour. Technol. 2016, 222, 210–216. [Google Scholar] [CrossRef]
- Tipre, D.; Purohit, M.; Dave, S. Production and characterization of lipase from Staphylococcus sp. SDMlip. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 423–436. [Google Scholar] [CrossRef]
- Sharma, R.; Chisti, Y.; Banerjee, U.C. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 2001, 19, 627–662. [Google Scholar] [CrossRef] [Green Version]
- Gomes, N.; Dias, K.; Ferreira Netto Teixeira, M.; Auler do Amaral Santos, C.C.; Almeida, A. Medium composition and Amazonian oils for lipase production by Candida viswanathii. Acta Sci. Technol. 2018, 40, 35088. [Google Scholar] [CrossRef]
- Uscátegui, Y.; Jiménez-Junca, C.; Suárez, C.; Prieto-Correa, E. Evaluation of the induction of lipolytic enzymes from a Pseudomona aeruginosa isolated from african palm fruit (Elaeis guineensis). Vitae 2012, 19, 280–286. [Google Scholar]
- Costa, T.M.; Hermann, K.L.; Garcia-Roman, M.; Valle, R.D.C.S.C.; Tavares, L.B.B. Lipase production by Aspergillus Niger grown in different agro-industrial wastes by solid-state fermentation. Braz. J. Chem. Eng. 2017, 34, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Zarevúcka, M. Olive Oil as Inductor of Microbial Lipase. In Olive Oil; Dimitrios, B., Ed.; IntechOpen: London, UK, 2012; Volume 1. [Google Scholar]
- Mitchell, D.A.; Berovic, M.; Krieger, N. Solid-State Fermentation Bioreactors-Fundamentals of Design and Operation; Springer: Berlin/Heidelberg, Germany, 2006; p. 447. [Google Scholar]
- Mitchell, D.; Meien, O.; Krieger, N.; Dalsenter, F. Recent Developments in Modeling of Microbial Growth Kinetics and Intraparticle Phenomena in Solid State Fermentation. Biochem. Eng. J. 2004, 35, 15–26. [Google Scholar] [CrossRef]
- Steudler, S.; Bley, T. Biomass estimation during macro-scale solid-state fermentation of basidiomycetes using established and novel approaches. Bioprocess Biosyst. Eng. 2015, 38, 1313–1323. [Google Scholar] [CrossRef]
- Botella, C.; Hernandez, J.E.; Webb, C. Dry weight model, capacitance and metabolic data as indicators of fungal biomass growth in solid state fermentation. Food Bioprod. Process. 2019, 114, 144–153. [Google Scholar] [CrossRef]
- Ride, J.P.; Drysdale, R.B. A rapid method for the chemical estimation of filamentous fungi in plant tissue. Physiol. Plant Pathol. 1972, 2, 7–15. [Google Scholar] [CrossRef]
- Aidoo, K.E.; Hendry, R.; Wood, B.J.B. Estimation of fungal growth in a solid state fermentation system. Eur. J. Appl. Microbiol. Biotechnol. 1981, 12, 6–9. [Google Scholar] [CrossRef]
- Plassard, C.; Mousain, D.; Salsac, L. Estimation of mycelial growth of basidiomycetes by means of chitin determination. Phytochemistry 1982, 21, 345–348. [Google Scholar] [CrossRef]
- Vega, R.; Domínguez, A. Cell wall composition of the yeast and mycelial forms of Yarrowia lipolytica. Arch. Microbiol. 1986, 144, 124–130. [Google Scholar] [CrossRef]
- Pitol, L.O.; Finkler, A.T.J.; Dias, G.S.; Machado, A.S.; Zanin, G.M.; Mitchell, D.A.; Krieger, N. Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochem. 2017, 62, 37–47. [Google Scholar] [CrossRef]
- Mansoldo, F.R.P.; Firpo, R.; Cardoso, V.D.S.; Queiroz, G.N.; Cedrola, S.M.L.; de Godoy, M.G.; Vermelho, A.B. New method for rapid identification and quantification of fungal biomass using ergosterol autofluorescence. Talanta 2020, 219, 121238. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; You, J.; Friehs, K.; Flaschel, E.; Nattkemper, T.W. An in situ probe for on-line monitoring of cell density and viability on the basis of dark field microscopy in conjunction with image processing and supervised machine learning. Biotechnol. Bioeng. 2007, 97, 1489–1500. [Google Scholar] [CrossRef] [PubMed]
- Wollmann, T.; Erfle, H.; Eils, R.; Rohr, K.; Gunkel, M. Workflows for microscopy image analysis and cellular phenotyping. J. Biotechnol. 2017, 261, 70–75. [Google Scholar] [CrossRef]
- Coelho, M.A.; Belo, I.; Pinheiro, R.; Amaral, A.L.; Mota, M.; Coutinho, J.A.; Ferreira, E.C. Effect of hyperbaric stress on yeast morphology: Study by automated image analysis. Appl. Microbiol. Biotechnol. 2004, 66, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Peclat, V.E.O.L. Variação Morfológica de Yarrowia lipolytica em Fermentação no Estado Sólido. Ph.D. Thesis, Chemical and Biochemical Process Technology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Antolović, V.; Marinović, M.; Filić, V.; Weber, I. A simple optical configuration for cell tracking by dark-field microscopy. J. Microbiol. Methods 2014, 104, 9–11. [Google Scholar] [CrossRef]
- Lawrence, J.; Korber, D.; Caldwell, D. Computer-enhanced darkfield microscopy for the quantitative analysis of bacterial growth and behavior on surfaces. J. Microbiol. Methods 1989, 10, 123–138. [Google Scholar] [CrossRef]
- Burgemeister, S.; Nattkemper, T.W.; Noll, T.; Hoffrogge, R.; Flaschel, E. CellViCAM—Cell viability classification for animal cell cultures using dark field micrographs. J. Biotechnol. 2010, 149, 310–316. [Google Scholar] [CrossRef]
- Kawasse, F.M.; Amaral, P.F.; Rocha-Leão, M.H.; Amaral, A.L.; Ferreira, E.C.; Coelho, M.A. Morphological analysis of Yarrowia lipolytica under stress conditions through image processing. Bioprocess Biosyst. Eng. 2003, 25, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Braga, A.; Mesquita, D.P.; Amaral, A.L.; Ferreira, E.C.; Belo, I. Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media. J. Biotechnol. 2016, 217, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Botelho, A.; Penha, A.; Fraga, J.; Barros-Timmons, A.; Coelho, M.A.; Lehocky, M.; Štěpánková, K.; Amaral, P. Yarrowia lipolytica Adhesion and Immobilization onto Residual Plastics. Polymers 2020, 12, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Y.; Wang, L.; Chen, H. Digital image analysis and fractal-based kinetic modelling for fungal biomass determination in solid-state fermentation. Biochem. Eng. J. 2012, 67, 60–67. [Google Scholar] [CrossRef]
- López-Gómez, J.P.; Pérez-Rivero, C.; Webb, C. Investigating a non-destructive alternative for a preliminary evaluation of fungal growth in solid state fermentations. J. Microbiol. Methods 2019, 160, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Environmental Condition | Effector | Observed Effect |
---|---|---|
Physico-chemical | pH | Controversial observations of ovoid and mycelium forms in acid and neutral values |
Temperature | A decrease in intracellular cAMP *, Heat shock (4 or 37 °C) increases filament formation | |
Dissolved oxygen | Limited oxygen favors filament formation, except for glucose-limited conditions | |
Osmotic stress | Osmotic stress block hyphae formation in media with N-acetylglucosamine and cells become round and smaller, but not in serum | |
Mechanical | Agitation rate | Controversial observation regarding mechanical and pneumatical agitation |
Pressure | Until 8 bar no effect is observed (no oxidative stress) | |
Nutritional | Carbon source | Glucose, N-acetylglucosamine, serum, and hydrophobic substrates (oils in general, except for castor oil) induce hyphae formation |
Nitrogen source | Controversial observations regarding organic and inorganic sources | |
Metal ions | Deficiency of Mg+2 (<2 × 10−5 M), Fe3+ (<10−7 M) suppress mycelia development Controversial reports over Ca+2 ions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, F.V.d.; Lemes, A.C.; Castro, A.M.d.; Secchi, A.R.; Zarur Coelho, M.A. A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes 2022, 10, 381. https://doi.org/10.3390/pr10020381
Nascimento FVd, Lemes AC, Castro AMd, Secchi AR, Zarur Coelho MA. A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes. 2022; 10(2):381. https://doi.org/10.3390/pr10020381
Chicago/Turabian StyleNascimento, Felipe Valle do, Ailton Cesar Lemes, Aline Machado de Castro, Argimiro Resende Secchi, and Maria Alice Zarur Coelho. 2022. "A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation" Processes 10, no. 2: 381. https://doi.org/10.3390/pr10020381
APA StyleNascimento, F. V. d., Lemes, A. C., Castro, A. M. d., Secchi, A. R., & Zarur Coelho, M. A. (2022). A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes, 10(2), 381. https://doi.org/10.3390/pr10020381