Frost Formation in Frozen Meat Packaged with Two Plastic Films (LDPE and PVC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Experimental Determinations
2.2.1. Water Vapor Transmission and Permeance
2.2.2. Frost Evaluation
Optical Analysis
Frosting on Packages
2.2.3. Effects on Frost Formation by Freezing Process and Storage Days on Meat and Films
Structural Components
Structural Behavior by MDSC
2.3. Statistical Analysis
3. Results and Discussion
3.1. Determination of WVT Rate and Permeance of Containers
3.2. Frost Formed on the Surface of the Meat
3.3. Frost Formed Inside the Containers
3.4. Identification of Functional and Compound Groups by Fourier Transform Infrared Spectrophotometry (FTIR-ATR)
3.4.1. Identification of Functional Groups and Compounds of Films before Freezing–Thawing and after Thawing
3.4.2. Identification of Functional Groups and Compounds of Ice Water
3.4.3. Identification of Functional Groups and Compounds of Meat Surfaces at Frost
3.5. Kinetic and Structural Behavior, Analysis with Modulated Differential Calorimeter (MDSC)
3.5.1. Kinetic and Structural Behavior of PVC and LDPE Films
3.5.2. Kinetic and Structural Behavior of Ultrapure Water and from Meat Frost and Container Surfaces
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moraga, N.O.; Jauriat, L.O.; Lemus-Mondaca, R.A. Heat and mass transfer in conjugate food freezing/air natural convection. Int. J. Refrig. 2012, 35, 880–889. [Google Scholar] [CrossRef]
- Kim, K.H.; Ko, H.; Kim, K.; Kim, Y.; Cho, K.J. Analysis of heat transfer and frost layer formation on a cryogenic tank wall exposed to the humid atmospheric air. Appl. Therm. Eng. 2009, 29, 2072–2079. [Google Scholar] [CrossRef]
- Lee, Y.; Ro, S. Analysis of the frost growth on a flat plate by simple models of saturation and supersaturation. Exp. Therm. Fluid Sci. 2005, 29, 685–696. [Google Scholar] [CrossRef]
- Kandula, M. Frost growth and densification in laminar flow over flat surfaces. Int. J. Heat Mass Transf. 2011, 54, 3719–3731. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Jia, W.; Wang, K. Study on the heat transfer characteristics of an ambient air vaporizer with multi-component fluids. Processes 2022, 10, 851. [Google Scholar] [CrossRef]
- Li, S.H.; Yang, K.S.; Wang, C.C. A Semi-empirical model for predicting frost properties. Processes 2021, 9, 412. [Google Scholar] [CrossRef]
- Laguerre, O.; Flick, D. Frost formation on frozen products preserved in domestic freezers. J. Food Eng. 2007, 79, 124–136. [Google Scholar] [CrossRef]
- Campañone, L.A.; Salvatori, V.O.; Mascheroni, R.H. Weight loss during freezing and storage of unpackaged foods. J. Food Eng. 2001, 47, 69–79. [Google Scholar] [CrossRef]
- Do, G.S.; Sagara, Y.; Tabata, M.; Kudoh, K.; Higuchi, T. Three-dimensional measurement of ice crystals in frozen beef with a micro-slicer image processing system. Int. J. Refrig. 2004, 27, 184–190. [Google Scholar] [CrossRef]
- Bertram, H.; Andersen, R.; Andersen, H. Development in myofibrillar water distribution of two pork qualities during 10-month freezer storage. Meat Sci. 2007, 75, 128–133. [Google Scholar] [CrossRef]
- Sawyer, J.Y.; Baublits, R.T.; Apple, J.K.; Meullent, J.F.; Johnson, Z.B.; Alpers, T.K. Lateral and longitudinal characterization of color stability, instrumental tenderness, and sensory characteristics in the beef semimembranosus. Meat Sci. 2007, 75, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.W.; Choi, Y.M.; Lee, S.H.; Choe, J.H.; Hong, K.C.; Park, H.C.; Kim, B.C. Correlations of trained panel sensory values of cooked pork with fatty acid composition, muscle fiber type, and pork quality characteristics in berkshire pigs. Meat Sci. 2010, 86, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.J.; Won-Lee, J.W. How Does the Freezer Burn Our Food? J. Food Sci. Educ. 2009, 8, 45–52. [Google Scholar] [CrossRef]
- Campañone, L.A.; Salvadori, V.O.; Mascheroni, R.H. Food freezing with simultaneous surface dehydration: Approximate prediction of freezing time. Int. J. Heat Mass Transf. 2005, 48, 1205–1213. [Google Scholar] [CrossRef]
- Urquiola, A.; Álvarez, G.; Flick, D. Frost formation modeling during the storage of frozen vegetables exposed to temperature fluctuations. J. Food Eng. 2017, 214, 16–28. [Google Scholar] [CrossRef]
- Navid, P.; Niroomand, S.; Simonson, C. An analytical model for predicting frosting limit in membranes. Int. J. Refrig. 2018, 99, 316–326. [Google Scholar] [CrossRef]
- Rafati, N.M.; Fauchoux, F.; Besant, R.; Simonson, R. A review of frosting in air-to-air energy exchangers. Renew. Sustain. Energy Rev. 2014, 30, 538–554. [Google Scholar] [CrossRef]
- Nompumelelo, S.; Thandeka, N.M.; Pieter, A.G.; Louwrens, C.H. The influence of normal and high ultimate muscle pH on the microbiology and colour stability of previously frozen black wildebeest (Connochaetes gnou) meat. Meat Sci. 2018, 135, 14–19. [Google Scholar]
- Medic, H.; Djurkin, I.; Pleadinc, J.; Kozacinskid, L.; Njarid, B. The impact of frozen storage duration on physical, chemical and microbiological properties of pork. Meat Sci. 2018, 140, 119–127. [Google Scholar] [CrossRef]
- Eskin, M. Food shelf-life stability. In Chemical, Biochemical, and Microbiological Changes; CRC Press: Washington, DC, USA, 2001. [Google Scholar]
- Braña, D.; Ramírez, E.; Rubio, M.S.; Sánchez, A. Manual de Análisis de Calidad en la Carne; Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal: Querétaro, Mexico, 2011. [Google Scholar]
- Schultz, J. Polymer crystallization. In The Development of Crystalline Order in Thermoplastic Polymers; Oxford University Press: New York, NY, USA, 2001; pp. 21–30. [Google Scholar]
- Arrieta, M.P.; Samper, M.D.; Jiménez-López, M.; Aldas, M.; López, J. Combined effect of linseed oil and gum rosin as natural additives for PVC. Ind. Crops Prod. 2017, 99, 196–204. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Water Vapor Transmission of Materials. Standard Designations: E96-95. In Annual Book of American Society for Testing Materials; ASTM International: West Conshocken, PA, USA, 1995. [Google Scholar]
- Meléndez, P.R.; Rosas, M.M.E.; Mercado, M.C.; Velázquez, C.R.; Arjona, R.J.L. Comparison of melting frost layers after 2 frozen methods in pork cuts (Longissimus dorsi). Procedia Food Sci. 2011, 1, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Abdel, M.A.; Aly, S.S.; Elshaer, Y.H. Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR. Spectrochim. Acta Part A 2012, 93, 203–207. [Google Scholar]
- Bertuzzi, M.A.; Armanda, M.; Gottifredi, J.C.; Aparicio, A.R.; Jiménez, P. Estudio de la permeabilidad al vapor de agua de films comestibles para recubrir alimentos. In Congreso Regional de Ciencia y Tecnología; Universidad de Catamarca: Buenos Aires, Argentina, 2002. [Google Scholar]
- Thomas, S.; Wilson, W.; Kumar, A.S.; Soney, C. Transport Properties of Polymeric Membranes; Elsevier: Amsterdam, The Netherlands; Bookaid International: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Araki, Y.; Kobayashi, Y.; Kawaguchib, T.; Kanekob, T.; Arai, N. Water permeation in polymeric membranes: Mechanism and synthetic strategy for water-inhibiting functional polymers. J. Membr. Sci. 2018, 564, 184–192. [Google Scholar] [CrossRef]
- Quintana, P.J. Análisis y Diseño de Empaques Flexibles, Laminados Para Envasar Alimentos. Bachelor’s Thesis, Tesis de Licenciatura, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Guayaquil, Ecuador, 2007. [Google Scholar]
- Leoni, A.; Mondot, M.; Durier, F.; Revellin, R.; Haberschill, P. Frost formation and development on flat plate: Experimental investigation and comparison to predictive methods. Exp. Therm. Fluid Sci. 2017, 88, 220–233. [Google Scholar] [CrossRef]
- Qu, K.; Komori, S.; Jiang, Y. Local variation of frost layer thickness and morphology. Int. J. Therm. Sci. 2006, 45, 116–123. [Google Scholar] [CrossRef]
- Colom, X.; Arias, M.; Valldeperas, J.; Carrillo, F. Caracterización Mediante Espectrofotometría FT-IR del PVC Sometido a Degradación Térmica en Medio Ácido Oxidante; Polytechnic University of Catalonia: Barcelona, Spain, 2003. [Google Scholar]
- Inca, F.; Quiroz, I.; Aldás, M. Recuperación de Policloruro de Vinilo (PVC) apartir de tarjetas de identificación para la obtención de materiales plastificados. Esc. Politécnica Nac. 2016, 37, 46. [Google Scholar]
- Dogana, F.; Sirinb, K.; Kolcua, F.; Kayaa, I. Conducting polymer composites based on LDPE doped with poly (aminonaphthol sulfonic acid). J. Electrostat. 2018, 94, 85–93. [Google Scholar] [CrossRef]
- Mondragón, C.P. Espectroscopia de Infrarrojo Para Todos…y 51 Espectros de Alimentos Consumidos en México; Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Unidad de Tecnología Alimentaria: Zapopan, Jalisco, Mexico, 2017. [Google Scholar]
- Gáscue, B.; Figueroa, A. Caracterización de polietilenos obtenidos a partir de diferentes sistemas catalíticos de coordinación. Rev. Lat. Metal. Mat. 2003, 23, 9–15. [Google Scholar]
- Ozturk, K.O.; Singh, P.T. Water transport in starchy foods: Experimental and mathematical aspects. Trends Food Sci. Technol. 2018, 78, 11–24. [Google Scholar] [CrossRef]
- Agwuncha, S.; Ibrahim, I.; Sadiku, E. Improving the thermal and flame resistance properties of polyolefins. In Polylefin Fibres, 2nd ed.; Woodhead Publishing: Thorston, UK, 2017; pp. 421–448. [Google Scholar]
Container | WVT (g/cm²·s) | Permeance P (g/Pa·cm²·s) |
---|---|---|
LDPE | 1.433 × 10−4 ± 0.15 a | 6.402 × 10−10 ± 0.18 a |
PVC | 1.433 × 10−4 ± 0.17 a | 4.739 × 10−11 ± 0.15 b |
Frost Thickness (mm) | ||
---|---|---|
Metal plate | 2.24 ± 0.10 a | |
Meat | 0.55 ± 0.12 b | |
LDPE | 2 days | 0.21 ± 0.01 c |
7 days | 0.21 ± 0.01 c | |
15 days | 0.18 ± 0.01 d | |
PVC | 2 days | 0.22 ± 0.02 c |
7 days | 0.19 ± 0.01 c,d | |
15 days | 0.14 ± 0.01 d |
Start Transition (°C) | Maximum Point (°C) | End of Transition (°C) | ΔCp (J/g °C) | |
---|---|---|---|---|
LDPE | −44.90 ± 0.51 e | −44.41 ± 0.74 d | −44.20 ± 0.21 e | 0.035 ± 0.003 c |
−37.20 ± 0.20 d | −34.00 ± 0.52 c | −32.63 ± 0.11 d | 0.127 ± 0.009 a | |
−11.47 ± 0.11 b | −9.77 ± 0.33 b | −9.47 ± 0.09 c | 0.012 ± 0.004 d | |
PVC | −43.53 ± 0.36 e | −43.07 ± 0.88 d | −42.63 ± 0.18 e | 0.028 ± 0.006 c |
−14.59 ± 0.31 c | −8.78 ± 0.55 b | 8.61 ± 0.21 b | 0.193 ± 0.011 a | |
2.93 ± 0.64 a | 1.34 ± 0.50 a | 10.57 ± 0.69 a | 0.061 ± 0.010 b |
Tg | Reference (°C) | Start Transition (°C) | Maximum Point (°C) | Energy (J/g) |
---|---|---|---|---|
LDPE | −90 to −25 | −32.06 ± 0.68 b | −30.18 ± 1.11 b | 0.01204 ± 0.00 b |
PVC | 87.00 | 87.31 ± 1.05 a | 98.05 ± 1.29 a | 3.12 ± 0.08 a |
Start Transition (°C) | Maximum Point (°C) | Enthalpy (J/g) | |
---|---|---|---|
Ultra-pure water | −2.69 ± 0.03 a | 5.42 ± 0.01 a | 345.4 ± 1.5 a |
Frost LDPE film | −4.51 ± 0.02 b | 4.69 ± 0.00 b | 327.8 ± 1.2 b |
Frost PVC film | −5.60 ± 0.00 c | 3.16 ± 0.55 c | 312.2 ± 2.3 c |
Meat frost LDPE | −5.25 ± 0.42 c | 3.58 ± 0.02 c | 304.7 ± 0.9 d |
Meat frost PVC | −4.72 ± 0.01 b,c | 3.57 ± 0.33 c | 308.2 ± 2.7 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meléndez-Pérez, R.; Rodríguez-Hernández, Y.; Arjona-Román, J.L.; Méndez-Albores, A.; Coria-Hernández, J. Frost Formation in Frozen Meat Packaged with Two Plastic Films (LDPE and PVC). Processes 2022, 10, 2415. https://doi.org/10.3390/pr10112415
Meléndez-Pérez R, Rodríguez-Hernández Y, Arjona-Román JL, Méndez-Albores A, Coria-Hernández J. Frost Formation in Frozen Meat Packaged with Two Plastic Films (LDPE and PVC). Processes. 2022; 10(11):2415. https://doi.org/10.3390/pr10112415
Chicago/Turabian StyleMeléndez-Pérez, Rosalía, Yevit Rodríguez-Hernández, José Luis Arjona-Román, Abraham Méndez-Albores, and Jonathan Coria-Hernández. 2022. "Frost Formation in Frozen Meat Packaged with Two Plastic Films (LDPE and PVC)" Processes 10, no. 11: 2415. https://doi.org/10.3390/pr10112415
APA StyleMeléndez-Pérez, R., Rodríguez-Hernández, Y., Arjona-Román, J. L., Méndez-Albores, A., & Coria-Hernández, J. (2022). Frost Formation in Frozen Meat Packaged with Two Plastic Films (LDPE and PVC). Processes, 10(11), 2415. https://doi.org/10.3390/pr10112415