Enhanced Natural Dyeing and Antibacterial Properties of Cotton by Physical and Chemical Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plasma Treatment
2.3. Cotton Surface Characterization
2.4. Dyeing Process
2.5. Concentrations of Metal Ions in Dyed Fabrics
2.6. Assessment of Natural Dye Attachment
2.7. Color Fastness
2.8. Antibacterial Activity
3. Results and Discussion
3.1. Surface Characterization
3.2. Trace Metal Ions in Finished Samples
3.3. Colorimetric Parameters
3.4. Color Fastness
3.5. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulzar, T.; Farooq, T.; Kiran, S.; Ahmad, I.; Hameed, A. Green Chemistry in the Wet Processing of Textiles, in the Impact and Prospects of Green Chemistry for Textile Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–20. [Google Scholar]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Islam, S.U.; Mohammad, F. Emerging Green Technologies and Environment Friendly Products for Sustainable Textiles; Springer: Singapore, 2014; pp. 63–82. [Google Scholar]
- Sheriff, I.; Debela, S.A.; Kabia, O.A.; Ntoutoume, C.E.; Turay, M.J. The phase out of and restrictions on per-and polyfluoroalkyl substances: Time for a rethink. Chemosphere 2020, 251, 126313. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Raja, A.S.M.; Arputharaj, A. Challenges in Sustainable Wet Processing of Textiles; Springer: Singapore, 2016; pp. 43–79. [Google Scholar]
- Adeel, S.; Rehman, F.-U.; Rafi, S.; Zia, K.M.; Zuber, M. Environmentally Friendly Plant-Based Natural Dyes: Extraction Methodology and Applications; Springer: Dordrecht, Germany, 2019; pp. 383–415. [Google Scholar]
- Eid, B.M.; Ibrahim, N.A. Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. J. Clean. Prod. 2020, 284, 124701. [Google Scholar] [CrossRef]
- Arora, J.; Agarwal, P.; Gupta, G. Rainbow of Natural Dyes on Textiles Using Plants Extracts: Sustainable and Eco-Friendly Processes. Green Sustain. Chem. 2017, 07, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Adeyemo, S.M.; Akinloye, A.J.; Adekanmi, G.B. The Use of Plant Dyes for Microbial Staining and Identification: An Eco-friendly and Non-Toxic Alternative Method. J. Adv. Biol. Biotechnol. 2018, 16, 1–10. [Google Scholar] [CrossRef]
- Haji, A. Dyeing of Cotton Fabric with Natural Dyes Improved by Mordants and Plasma Treatment. Prog. Color Color. Coat. 2019, 12, 191–201. [Google Scholar]
- Khan, M.A.; Wahid, A.; Ahmad, M.; Tahir, M.T.; Ahmed, M.; Ahmad, S.; Hasanuzzaman, M. World Cotton Production and Consumption: An Overview; Springer: Singapore, 2020; pp. 1–7. [Google Scholar]
- Omotosho, O.O.; Ameuru, U.S. Synthesis and Dyeing Properties of Acid Dyes Derived from 1-amino-2-naphthol-4-sulphonic Acid. World J. Appl. Chem. 2019, 4, 63. [Google Scholar] [CrossRef]
- Teklemedhin, T.B.; Gopalakrishnan, L.H. Environmental Friendly Dyeing of Silk Fabric with Natural Dye Extracted from Cassia singueana Plant. J. Text. Sci. Eng. 2018, 1, 1–6. [Google Scholar] [CrossRef]
- Kan, C.; Lo, C.K.Y.; Man, W.S. Environmentally friendly aspects in coloration. Color Technol. 2016, 132, 4–8. [Google Scholar] [CrossRef]
- İşmal, Ö.E.; Yıldırım, L. Metal Mordants and Biomordants, in the Impact and Prospects of Green Chemistry for Textile Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–82. [Google Scholar]
- Repon, M.R.; Islam, M.T.; Al Mamun, M.A. Ecological risk assessment and health safety speculation during color fastness properties enhancement of natural dyed cotton through metallic mordants. Fashion Textiles 2017, 4, 1–17. [Google Scholar] [CrossRef]
- Saxena, S.; Raja, A.S.M. Natural dyes: Sources, chemistry, application and sustainability issues. In Roadmap to Sustainable Textiles and Clothing; Springer: Singapore, 2014; pp. 37–80. [Google Scholar]
- Rani, K.; Aliya, R.; Solangi, B.A.; Pervez, M.K.; Akhtar, N.; Ahmed, F. Antimicrobial textile dyeing by applying natural colorants of brown seaweed (cystoseira indica). Pakistan J. Weed Sci. Res. 2020, 26, 403–414. [Google Scholar] [CrossRef]
- Kasiri, M.B.; Safapour, S. Natural dyes and antimicrobials for green treatment of textiles. Environ. Chem. Lett. 2013, 12, 1–13. [Google Scholar] [CrossRef]
- Meena, V.; Sheikh, J. Multifunctional modification of knitted cotton fabric using pomegranate peel waste. Cell. Chem. Technol. 2018, 52, 883–889. [Google Scholar]
- Ibrahim, F.; El-Amoudy, E.S.; Shady, K. Thermal Analysis and Characterization of Some Cellulosic Fabrics Dyed by a New Natural Dye and Mordanted with Different Mordants. Int. J. Chem. 2011, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Moniruzzaman, M.; Mondal, M.S.; Hossain, M.N. The influence of mordant and mordanting techniques on ecofriendly dyeing of cotton fabric by extracted used tea. J. Eng. Sci. 2018, 9, 111–117. [Google Scholar]
- Mulec, I.; Gorjanc, M. The Influence of Mordanting on the Dyeability of Cotton Dyed with Turmeric Extract. TEKSTILEC 2015, 58, 199–208. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar]
- Baysal, A.; Ozbek, N.; Akman, S. Determination of trace metals in waste water and their removal processes. Waste Water-Treat. Technol. Recent Anal. Dev. 2013, 1, 145–171. [Google Scholar]
- Iva Rezić, I.S. ICP-OES determination of metals present in textile materials. Microchem. J. 2007, 85, 46–51. [Google Scholar] [CrossRef]
- Park, Y.; Koo, K. The eco-friendly surface modification of textiles for deep digital textile printing by in-line atmospheric non-thermal plasma treatment. Fibers Polym. 2014, 15, 1701–1707. [Google Scholar] [CrossRef]
- Yaman, N.; Özdoğan, E.; Seventekin, N.; Ayhan, H. Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff. Appl. Surf. Sci. 2008, 255, 6764–6770. [Google Scholar] [CrossRef]
- Zille, A. Plasma Technology in Fashion and Textiles, in Sustainable Technologies for Fashion and Textiles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–142. [Google Scholar]
- Woskowicz, E.; Łożyńska, M.; Kowalik-Klimczak, A.; Kacprzyńska-Gołacka, J.; Osuch-Slomka, E.; Piasek, A.; Gradon, L. Plasma deposition of antimicrobial coatings based on silver and copper on polypropylene. Polimery 2020, 65, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Davulcu, A.; Benli, H.; Şen, Y.; Bahtiyari, M.I. Dyeing of cotton with thyme and pomegranate peel. Cellulose 2014, 21, 4671–4680. [Google Scholar] [CrossRef]
- Ajmal, M.; Adeel, S.; Azeem, M.; Zuber, M.; Akhtar, N.; Iqbal, N. Modulation of pomegranate peel colourant characteristics for textile dyeing using high energy radiations. Ind. Crop. Prod. 2014, 58, 188–193. [Google Scholar] [CrossRef]
- Basak, S.; Ali, S.W. Wastage pomegranate rind extracts (PRE): A one step green solution for bioactive and naturally dyed cotton substrate with special emphasis on its fire protection efficacy. Cellulose 2019, 26, 3601–3623. [Google Scholar] [CrossRef]
- Sungur, Ş.; Gülmez, F. Determination of Metal Contents of Various Fibers Used in Textile Industry by MP-AES. J. Spectrosc. 2015, 2015, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Chen, Q.; Wu, S.-S.; Shen, J.; Lin, S.-C. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J. Membr. Sci. 2010, 350, 387–394. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Hou, Q.; Liu, H.; Lei, H.; Jian, B.; Li, X. Preparation of cellulose nanofibrils from okara by high pressure homogenization method using deep eutectic solvents. Cellulose 2020, 27, 2511–2520. [Google Scholar] [CrossRef]
- Kim, M.H.; Jun, Y.J.; Elzatahry, A.; Alothman, Z.A.; Vinu, A.; Bin Choy, Y.; Choy, J.-H. Hydrophobic Guest Mediated Micellization and Demicellization of Rationally Designed Amphiphilic Poly(organophosphazene) for Efficient Drug Delivery. Sci. Adv. Mater. 2016, 8, 1553–1562. [Google Scholar] [CrossRef]
- El-Gaoudy, H.; Kourkoumelis, N.; Varella, E.; Kovala-Demertzi, D. The effect of thermal aging and color pigments on the Egyptian linen properties evaluated by physicochemical methods. Appl. Phys. A 2011, 105, 497–507. [Google Scholar] [CrossRef]
- Liang, C.Y.; Marchessault, R.H. Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm.1. J. Polym. Sci. 1959, 39, 269–278. [Google Scholar] [CrossRef]
- Pappas, C.; Tarantilis, P.; Daliani, I.; Mavromoustakos, T.; Polissiou, M. Comparison of classical and ultrasound-assisted isolation procedures of cellulose from kenaf (Hibiscus cannabinus L.) and eucalyptus (Eucalyptus rodustrus Sm.). Ultrason. Sonochemistry 2002, 9, 19–23. [Google Scholar] [CrossRef]
- Kan, C.-W.; Man, W.-S. Surface Characterisation of Atmospheric Pressure Plasma Treated Cotton Fabric—Effect of Operation Parameters. Polymers 2018, 10, 250. [Google Scholar] [CrossRef] [Green Version]
- Tuzen, M.; Onal, A.; Soylak, M. Determination of trace heavy metals in some textile products produced in Turkey. Bull. Chem. Soc. Ethiop. 2008, 22, 379–384. [Google Scholar] [CrossRef]
- Standard, G.O.T., Global Organic Textile Standard. Recuperado el, 27 June 2008. Available online: http://www.sopurefashion.com/images/certificated/What-is-GOTS-english.pdf (accessed on 17 October 2022).
- Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015, 5, 45853–45877. [Google Scholar] [CrossRef]
- Uddin, M.G. Effects of Different Mordants on Silk Fabric Dyed with Onion Outer Skin Extracts. J. Text. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Repon, R.; Repon, R.; Tauhidul Islam, M.; Al Mamun, A.; Abdur Rashid, M. Comparative study on natural and reactive dye for cotton coloration. J. Appl. Res. Technol. 2018, 16, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Chudobova, D.; Dostalova, S.; Ruttkay-Nedecky, B.; Guran, R.; Rodrigo, M.A.M.; Tmejova, K.; Krizkova, S.; Zitka, O.; Adam, V.; Kizek, R. The effect of metal ions on Staphylococcus aureus revealed by biochemical and mass spectrometric analyses. Microbiol. Res. 2014, 170, 147–156. [Google Scholar] [CrossRef]
- Silver, S.; Ji, G. Newer systems for bacterial resistances to toxic heavy metals. Environ. Health Perspect. 1994, 102, 107–113. [Google Scholar]
Sample | 3271 cm−1 |
---|---|
Untreated | 1.75 |
Plasma treated | 2.13 |
Mordanted Sample | Element | Concentration | |
---|---|---|---|
Plasma treated | Untreated | ||
Iron sulfate | Fe | 32.4 ± 2.4 | 69.3 ± 0.4 |
Aluminum sulfate | Al | 0.28 ± 0,04 | 1.11 ± 4.2 |
Potassium dichromate | Cr | 0.29 ± 0.11 | 0.36 ± 1.4 |
Copper sulfate | Cu | 1.21 ± 0.53 | 2.14 ± 25 |
Sample | K/S | L | a | b |
---|---|---|---|---|
Without mordant | 1.37 | 78.24 | 2.78 | 18.03 |
Iron sulfate | 0.85 | 64.94 | 0.43 | 0.99 |
Aluminium sulfate | 0.78 | 83.71 | 0.43 | 19.68 |
Potassium dichromate | 0.24 | 87.76 | −0.27 | 11 |
Copper sulfate | 1.93 | 71.69 | 2.94 | 20.88 |
Sample | Washing | Rubbing (Dry) | Rubbing (Wet) | Light |
---|---|---|---|---|
Without mordant | 3 | 4 | 4 | 2 |
Iron sulfate | 4–5 | 4–5 | 4–5 | 2–3 |
Aluminium Sulfate | 4–5 | 4–5 | 4–5 | 2–3 |
Potassium dichromate | 4–5 | 4–5 | 4–5 | 2–3 |
Copper sulfate | 4–5 | 4–5 | 4–5 | 2–3 |
Sample | CFU/mL | |
---|---|---|
(E. coli) | (S. aureus) | |
Without mordant | 126.67 ± 8.62 | 142.11 ± 3.42 |
Iron sulfate | 11.14 ± 5.05 | 35.14 ± 2.61 |
Aluminium sulfate | 29.2 ± 5.75 | 38.2 ± 4.12 |
Potassium dichromate | 31.33 ± 1.17 | 51.21 ± 3.21 |
Copper sulfate | 21 ± 2.79 | 42 ± 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ennaceur, S.; Bouaziz, A.; Gargoubi, S.; Mnif, W.; Dridi, D. Enhanced Natural Dyeing and Antibacterial Properties of Cotton by Physical and Chemical Pretreatments. Processes 2022, 10, 2263. https://doi.org/10.3390/pr10112263
Ennaceur S, Bouaziz A, Gargoubi S, Mnif W, Dridi D. Enhanced Natural Dyeing and Antibacterial Properties of Cotton by Physical and Chemical Pretreatments. Processes. 2022; 10(11):2263. https://doi.org/10.3390/pr10112263
Chicago/Turabian StyleEnnaceur, Soukaina, Aicha Bouaziz, Sondes Gargoubi, Wissem Mnif, and Dorra Dridi. 2022. "Enhanced Natural Dyeing and Antibacterial Properties of Cotton by Physical and Chemical Pretreatments" Processes 10, no. 11: 2263. https://doi.org/10.3390/pr10112263
APA StyleEnnaceur, S., Bouaziz, A., Gargoubi, S., Mnif, W., & Dridi, D. (2022). Enhanced Natural Dyeing and Antibacterial Properties of Cotton by Physical and Chemical Pretreatments. Processes, 10(11), 2263. https://doi.org/10.3390/pr10112263