Concept of an Enzymatic Reactive Extraction Centrifuge
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Construction
3.2. Operation
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmidt, A.; Köster, D.; Strube, J. Climate Neutrality Concepts for the German Chemical–Pharmaceutical Industry. Processes 2022, 10, 467. [Google Scholar] [CrossRef]
- Fernandes, P.; de Carvalho, C.C.C.R. Multi-Enzyme Systems in Flow Chemistry. Processes 2021, 9, 225. [Google Scholar] [CrossRef]
- Bié, J.; Sepodes, B.; Fernandes, P.C.B.; Ribeiro, M.H.L. Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes 2022, 10, 494. [Google Scholar] [CrossRef]
- Foley, A.M.; Maguire, A.R. The Impact of Recent Developments in Technologies which Enable the Increased Use of Biocatalysts. Eur. J. Org. Chem. 2019, 2019, 3713–3734. [Google Scholar] [CrossRef]
- Sarak, S.; Sung, S.; Jeon, H.; Patil, M.D.; Khobragade, T.P.; Pagar, A.D.; Dawson, P.E.; Yun, H. An Integrated Cofactor/Co-Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angew. Chem. 2021, 133, 3523–3528. [Google Scholar] [CrossRef]
- Lucato, W.; Santos, J.; Pacchini, A. Measuring the Sustainability of a Manufacturing Process: A Conceptual Framework. Sustainability 2018, 10, 81. [Google Scholar] [CrossRef]
- Kampers, L.F.C.; Asin-Garcia, E.; Schaap, P.J.; Wagemakers, A.; Martins Dos Santos, V.A.P. From Innovation to Application: Bridging the Valley of Death in Industrial Biotechnology. Trends Biotechnol. 2021, 39, 1240–1242. [Google Scholar] [CrossRef]
- Lv, L.; Dai, L.; Du, W.; Liu, D. Progress in Enzymatic Biodiesel Production and Commercialization. Processes 2021, 9, 355. [Google Scholar] [CrossRef]
- Žnidaršič-Plazl, P. Biocatalytic process intensification via efficient biocatalyst immobilization, miniaturization, and process integration. Curr. Opin. Green Sustain. Chem. 2021, 32, 100546. [Google Scholar] [CrossRef]
- Boodhoo, K.; Flickinger, M.C.; Woodley, J.M.; Emanuelsson, E. Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chem. Eng. Process. Process Intensif. 2022, 172, 108793. [Google Scholar] [CrossRef]
- Foo, D.; El-Halwagi, M. Special Issue on “Process Design, Integration, and Intensification”. Processes 2019, 7, 194. [Google Scholar] [CrossRef]
- Stankiewicz, A.I.; Yan, P. 110th Anniversary: The Missing Link Unearthed: Materials and Process Intensification. Ind. Eng. Chem. Res. 2019, 58, 9212–9222. [Google Scholar] [CrossRef]
- Rong, B.-G. Process Synthesis and Process Intensification: Methodological Approaches; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017; ISBN 311046506X. [Google Scholar]
- Dias, L.S.; Ierapetritou, M.G. Optimal operation and control of intensified processes—Challenges and opportunities. Curr. Opin. Chem. Eng. 2019, 25, 82–86. [Google Scholar] [CrossRef]
- Rüffer, N.; Heidersdorf, U.; Kretzers, I.; Sprenger, G.A.; Raeven, L.; Takors, R. Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst. Eng. 2004, 26, 239–248. [Google Scholar] [CrossRef]
- Kuzmin, A.; Pravdina, M.; Yavorsky, A.; Yavorsky, N.; Parmon, V. Vortex centrifugal bubbling reactor. Chem. Eng. J. 2005, 107, 55–62. [Google Scholar] [CrossRef]
- Abduh, M.Y.; van Ulden, W.; van de Bovenkamp, H.H.; Buntara, T.; Picchioni, F.; Manurung, R.; Heeres, H.J. Synthesis and refining of sunflower biodiesel in a cascade of continuous centrifugal contactor separators. Eur. J. Lipid Sci. Technol. 2015, 117, 242–254. [Google Scholar] [CrossRef]
- Fayyazi, E.; Ghobadian, B.; Mousavi, S.M.; Najafi, G. Intensification of continues biodiesel production process using a simultaneous mixer- separator reactor. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 1125–1136. [Google Scholar] [CrossRef]
- Ilmi, M.; Abduh, M.Y.; Hommes, A.; Winkelman, J.G.M.; Hidayat, C.; Heeres, H.J. Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator. Ind. Eng. Chem. Res. 2018, 57, 470–482. [Google Scholar] [CrossRef]
- Hamamah, Z.A.; Grützner, T. Liquid-Liquid Centrifugal Extractors: Types and Recent Applications—A Review. ChemBioEng Rev. 2022, 9, 286–318. [Google Scholar] [CrossRef]
- Tang, K.; Wang, Y.; Zhang, P.; Huang, Y.; Dai, G. Process optimization of continuous liquid–liquid extraction in centrifugal contactor separators for separation of oxybutynin enantiomers. Sep. Purif. Technol. 2015, 150, 170–178. [Google Scholar] [CrossRef]
- Lei, W.; Li, Z. Improved extraction of penicillin G using hydrocarbon sulfoxides. J. Chem. Technol. Biotechnol. 2004, 79, 281–285. [Google Scholar] [CrossRef]
- Michailidis, D.; Angelis, A.; Aligiannis, N.; Mitakou, S.; Skaltsounis, L. Recovery of Sesamin, Sesamolin, and Minor Lignans From Sesame Oil Using Solid Support-Free Liquid-Liquid Extraction and Chromatography Techniques and Evaluation of Their Enzymatic Inhibition Properties. Front. Pharmacol. 2019, 10, 723. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, J.; Meyer, F.; Engelmann, C.; Liese, A.; Fieg, G.; Bubenheim, P.; Waluga, T. Multi-enzyme cascade reaction in a miniplant two-phase-system: Model validation and mathematical optimization. AIChE J. 2021, 67, e17158. [Google Scholar] [CrossRef]
- Johannsen, J.; Engelmann, C.; Liese, A.; Fieg, G.; Bubenheim, P.; Waluga, T. Pilot-scale Operation of a Multi-enzymatic Cascade Reaction in a Multiphase System. Chem. Eng. Trans. 2020, 79, 25–30. [Google Scholar] [CrossRef]
- Meyer, F.; Johannsen, J.; Liese, A.; Fieg, G.; Bubenheim, P.; Waluga, T. Evaluation of process integration for the intensification of a biotechnological process. Chem. Eng. Process. Process Intensif. 2021, 167, 108506. [Google Scholar] [CrossRef]
- Engelmann, C.; Johannsen, J.; Waluga, T.; Fieg, G.; Liese, A.; Bubenheim, P. A Multi-Enzyme Cascade for the Production of High-Value Aromatic Compounds. Catalysts 2020, 10, 1216. [Google Scholar] [CrossRef]
- Buschulte, T.K.; Heimann, F. Verfahrensentwicklung durch Kombination von Prozeßsimulation und Miniplant-Technik. Chem. Ing. Tech. 1995, 67, 718–723. [Google Scholar] [CrossRef]
- Ilmi, M.; Kloekhorst, A.; Winkelman, J.; Euverink, G.; Hidayat, C.; Heeres, H.J. Process intensification of catalytic liquid-liquid solid processes: Continuous biodiesel production using an immobilized lipase in a centrifugal contactor separator. Chem. Eng. J. 2017, 321, 76–85. [Google Scholar] [CrossRef]
- Ajmal, M.; Fieg, G. Intensification of Lipase-Catalyzed Esterification using Ultrasound: Process Engineering Perspectives. Chem. Ing. Tech. 2017, 89, 1367–1373. [Google Scholar] [CrossRef]
- Wierschem, M.; Walz, O.; Mitsos, A.; Termuehlen, M.; Specht, A.L.; Kissing, K.; Skiborowski, M. Enzyme kinetics for the transesterification of ethyl butyrate with enzyme beads, coated packing and ultrasound assistance. Chem. Eng. Process. Process Intensif. 2017, 111, 25–34. [Google Scholar] [CrossRef]
- Enfors, S.-O.; Häggström, L. Bioprocess Technology: Fundamentals and Applications; Royal Institute of Technology: Stockholm, Sweden, 2000; ISBN 9171705112. [Google Scholar]
- Appl, C.; Baganz, F.; Hass, V.C. Development of a Digital Twin for Enzymatic Hydrolysis Processes. Processes 2021, 9, 1734. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, F.; Gasimov, N.; Bubenheim, P.; Waluga, T. Concept of an Enzymatic Reactive Extraction Centrifuge. Processes 2022, 10, 2137. https://doi.org/10.3390/pr10102137
Meyer F, Gasimov N, Bubenheim P, Waluga T. Concept of an Enzymatic Reactive Extraction Centrifuge. Processes. 2022; 10(10):2137. https://doi.org/10.3390/pr10102137
Chicago/Turabian StyleMeyer, Francesca, Nijat Gasimov, Paul Bubenheim, and Thomas Waluga. 2022. "Concept of an Enzymatic Reactive Extraction Centrifuge" Processes 10, no. 10: 2137. https://doi.org/10.3390/pr10102137
APA StyleMeyer, F., Gasimov, N., Bubenheim, P., & Waluga, T. (2022). Concept of an Enzymatic Reactive Extraction Centrifuge. Processes, 10(10), 2137. https://doi.org/10.3390/pr10102137