Preparation of Iron Salt-Modified Sludge Biochar and Its Uptake Behavior for Phosphate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Optimal Uptake Conditions
2.3. Sample Characterization
2.4. Kinetic and Isothermal Experiments
2.5. Data Analysis
3. Results and Discussion
3.1. Effect of Pyrolysis Temperature on Uptake and Release of Phosphate by Sludge Biochar
3.2. Effect of Modification Solution Concentration on Phosphate Uptake and Release
3.3. Phosphate Uptake by Modified Sludge Biochar
3.3.1. Effect of Biochar Dose
3.3.2. Effect of pH
3.3.3. Effect of Coexisting Anions
3.3.4. Isothermal Adsorption and Adsorption Kinetics
3.4. Mechanistic Analysis
3.4.1. Analysis of Specific Surface Area, Pore Size Distribution, and Pore Volume of Materials
3.4.2. Analysis of Surface Functional Groups of Materials
3.4.3. Surface Micromorphological Analysis of Materials
3.4.4. Surface Element Analysis of Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, W.; Yin, A.; Ma, J.; Su, Y. Investigation of NO conversion by different types of sewage sludge chars under low temperature. J. Environ. Manag. 2018, 209, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.R. Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2009, 367, 4005–4041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y. Recycling of wood chips and wheat dregs for sludge processing. Bioresour. Technol. 2001, 76, 161–163. [Google Scholar] [CrossRef]
- Blaney, L.M.; Cinar, S.; SenGupta, A.K. Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res. 2007, 41, 1603–1613. [Google Scholar] [CrossRef]
- Hou, Q.; Meng, P.; Pei, H.; Hu, W.; Chen, Y. Phosphorus adsorption characteristics of alum sludge: Adsorption capacity and the forms of phosphorus retained in alum sludge. Mater. Lett. 2018, 229, 31–35. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, X.; Luo, W.; Sun, J.; Xu, Q.; Chen, F.; Zhao, J.; Wang, S.; Yao, F.; Wang, D.; et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresour. Technol. 2018, 247, 537–544. [Google Scholar] [CrossRef]
- Saadat, S.; Raei, E.; Talebbeydokhti, N. Enhanced removal of phosphate from aqueous solutions using a modified sludge derived biochar: Comparative study of various modifying cations and RSM based optimization of pyrolysis parameters. J. Environ. Manag. 2018, 225, 75–83. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, K.; Yang, J.; Yu, Z.; Yu, W.; Xu, Q.; Wu, Q.; Liang, S.; Hu, J.; Hou, H.; et al. Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: A potential phosphorus fertilizer. Water Res. 2020, 174, 115629. [Google Scholar] [CrossRef]
- Swierczek, L.; Cieslik, B.M.; Konieczka, P. The potential of raw sewage sludge in construction industry—A review. J. Clean. Prod. 2018, 200, 342–356. [Google Scholar] [CrossRef]
- Yao, H.; Lu, J.; Wu, J.; Lu, Z.; Wilson, P.C.; Shen, Y. Upt Adsorption ake of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source. Water Air Soil Pollut. 2013, 224, 1370. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. Citation-Classic—A Modified Single Solution Method for the Determination of Phosphate in Natural-Waters. Curr. Contents/Agric. Biol. Environ. Sci. 1986, 12, 16. [Google Scholar]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Yang, T.; Zhang, A.; Wang, Y.; Chen, G. Effects of Pyrolysis Temperature on Characteristics of Porosity in Biomass Chars. In Proceedings of the 2009 International Conference on Energy and Environment Technology, Guilin, China, 16–18 October 2009; pp. 109–112. [Google Scholar] [CrossRef]
- Li, X.; Xie, Y.; Jiang, F.; Wang, B.; Hu, Q.; Tang, Y.; Luo, T.; Wu, T. Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms. Sci. Total Environ. 2020, 709, 136123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Miao, R.; Ning, P.; He, L.; Guan, Q. From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal. J. Colloid Interface Sci. 2021, 593, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Smith, R.L.; Fu, J.; Qi, X. High-capacity structured MgO-Co adsorbent for removal of phosphorus from aqueous solutions. Chem. Eng. J. 2021, 426, 131381. [Google Scholar] [CrossRef]
- Wan, J.; Zhu, C.; Hu, J.; Zhang, T.C.; Richter-Egger, D.; Feng, X.; Zhou, A.; Tao, T. Zirconium-loaded magnetic interpenetrating network chitosan/poly(vinyl alcohol) hydrogels for phosphorus recovery from the aquatic environment. Appl. Surf. Sci. 2017, 423, 484–491. [Google Scholar] [CrossRef]
- Veni, D.K.; Kannan, P.; Edison, T.N.J.I.; Senthilkumar, A. Biochar from green waste for phosphate removal with subsequent disposal. Waste Manag. 2017, 68, 752–759. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, X.; Li, Y.; Yang, G. Constructing biodegradable nanochitin-contained chitosan hydrogel beads for fast and efficient removal of Cu(II) from aqueous solution. Carbohydr. Polym. 2019, 211, 152–160. [Google Scholar] [CrossRef]
- Li, Y.; Gao, B.; Wu, T.; Sun, D.; Li, X.; Wang, B.; Lu, F. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res. 2009, 43, 3067–3075. [Google Scholar] [CrossRef]
- Mohammed, N.A.S.; Abu-Zurayk, R.A.; Hamadneh, I.; Al-Dujaili, A.H. Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. J. Environ. Manag. 2018, 226, 377–385. [Google Scholar] [CrossRef]
- Song, Z.; Lian, F.; Yu, Z.; Zhu, L.; Xing, B.; Qiu, W. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem. Eng. J. 2014, 242, 36–42. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.; Ren, H. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. J. Environ. Manag. 2019, 249, 109410. [Google Scholar] [CrossRef]
- Yan, L.-G.; Yang, K.; Shan, R.-R.; Yan, T.; Wei, J.; Yu, S.-J.; Yu, H.-Q.; Du, B. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe3O4@LDHs composites with easy magnetic separation assistance. J. Colloid Interface Sci. 2015, 448, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.A.; Haridas, A. Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. J. Hazard. Mater. 2008, 152, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.D.; Frost, R.L.; Kloprogge, J.T.; Duong, L. Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2002, 58, 967–981. [Google Scholar] [CrossRef]
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qm | KL | R2 | KF | n | R2 | |
SB-B-CK | 0.2498 | 0.1656 | 0.5662 | 0.0682 | −0.3286 | 0.4230 |
SB-B-F | 0.8496 | 0.5937 | 0.9356 | 0.3950 | −0.2289 | 0.8621 |
Pseudo-First-Order Model | Pseudo-Second Order Model | |||||
---|---|---|---|---|---|---|
qe | K1 | R2 | qe | K2 | R2 | |
SB-B-CK | 0.1823 | 3.1138 | 0.7929 | 0.1869 | 40.4046 | 0.9927 |
SB-B-Fe | 0.5820 | 2.3698 | 0.6850 | 0.6019 | 7.5323 | 0.9331 |
Surface Area (m2/g) | Average Pore Size (nm) | Pore Volume (cm3/g) | |
---|---|---|---|
SB-Raw | 43.4658 | 7.0739 | 0.0289 |
SB-AN-KF | 70.0682 | 8.8821 | 0.0148 |
SB-B-Fe | 71.0794 | 8.3436 | 1.0277 |
Element | SB-Raw/(%) | SB-AN-KF/(%) | SB-B-Fe/(%) | SB-B-Fe-P/(%) |
---|---|---|---|---|
C | 51.74 | 59.06 | 64.84 | 54.4 |
O | 33.00 | 27.71 | 22.81 | 30.57 |
AI | 2.66 | 2.57 | 2.03 | 2.36 |
Si | 7.62 | 6.49 | 6.82 | 6.74 |
Ca | 0.75 | 0.47 | 0.20 | 0.59 |
P | 0.73 | 0.42 | 0.19 | 0.74 |
Fe | 1.37 | 1.87 | 2.56 | 2.09 |
Mg | 0.60 | 0.41 | 0.25 | 0.43 |
Mn | 0.05 | 0.96 | 0.01 | 0.02 |
Cl | 0.02 | 0.02 | 0.11 | 0.11 |
N | 1.45 | 0.03 | 0.17 | 1.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, G.; Yan, X.; Deng, P.; Li, T.; Xia, Y.; Zhu, Z.; Wu, Y.; Fu, C. Preparation of Iron Salt-Modified Sludge Biochar and Its Uptake Behavior for Phosphate. Processes 2022, 10, 2122. https://doi.org/10.3390/pr10102122
Lan G, Yan X, Deng P, Li T, Xia Y, Zhu Z, Wu Y, Fu C. Preparation of Iron Salt-Modified Sludge Biochar and Its Uptake Behavior for Phosphate. Processes. 2022; 10(10):2122. https://doi.org/10.3390/pr10102122
Chicago/Turabian StyleLan, Guoxin, Xixi Yan, Peiyao Deng, Tingzhen Li, Yaping Xia, Zhihao Zhu, Yan Wu, and Chuan Fu. 2022. "Preparation of Iron Salt-Modified Sludge Biochar and Its Uptake Behavior for Phosphate" Processes 10, no. 10: 2122. https://doi.org/10.3390/pr10102122
APA StyleLan, G., Yan, X., Deng, P., Li, T., Xia, Y., Zhu, Z., Wu, Y., & Fu, C. (2022). Preparation of Iron Salt-Modified Sludge Biochar and Its Uptake Behavior for Phosphate. Processes, 10(10), 2122. https://doi.org/10.3390/pr10102122