Effects of Different Influencing Factors on Temperature Distributions and Cooling Performance of Turbocharger Bearing Casing
Abstract
:1. Introduction
2. Investigative Methods
2.1. Experimental Method
2.1.1. Experimental Apparatus
2.1.2. Data Acquisition and Processing
2.1.3. Temperature Measurement of Water-Cooled Bearing Casing in the Turbocharger
2.2. Evaluation Method
2.2.1. Performance Evaluation Index System
2.2.2. Fuzzy Judgment Matrix for Performance Evaluation
2.2.3. Weight Determination of Performance Index Factors
2.2.4. Performance Evaluation Steps of Water-Cooling System
3. Results and Discussion
3.1. Effect of Cooling-Water Inlet Flow Velocity on Cooling Performance
3.2. Effect of Inlet Temperature of Cooling Water on Cooling Performance
3.3. Effect of Exhaust Temperature on Cooling Performance
3.4. Effect of Cooling-Water Pressure on Cooling Performance
3.5. Performance Evaluation of the Water-Cooling System of the Turbocharger Bearing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
uij | Average value of evaluation values of performance index factors in item j of class i |
mij | The fuzzy subset boundary of performance index factor evaluation |
σij | The standard deviation of an evaluation value |
Ri | Fuzzy judgment matrix of the performance index |
C | The judgment matrix |
B | The target price matrix |
F | The fuzzy subset |
Wi | The weight of performance index factors of the water-cooling system |
AHP | The analytic hierarchy process |
FAHP | The fuzzy analytic hierarchy process |
References
- Mykhailyshyn, R.; Savkiv, V.; Duchon, F.; Koloskov, V.; Diahovchenko, I.M. Investigation of the Energy Consumption on Performance of Handling Operations Taking Into Account Parameters of the Grasping System. In Proceedings of the 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), Kharkiv, Ukraine, 10–14 September 2018; pp. 295–300. [Google Scholar] [CrossRef]
- Georges, S.; Guillaume, G.; Pascal, C. Water cooled turbocharger heat transfer model initialization: Turbine and compressor quasi-adiabatic maps generation. Appl. Therm. Eng. 2021, 185, 116430. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Wei, D.; Wang, G.; Xu, J.; Liu, K. Dynamic stability of unbalance-induced vibration in a turbocharger rotor-bearing system with the nonlinear effect of thermal turbulent lubricating fluid film. J. Sound Vib. 2022, 528, 116909. [Google Scholar] [CrossRef]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Coupled Engine-Propeller Selection Procedure to Minimize Fuel Consumption at a Specified Speed. J. Mar. Sci. Eng. 2021, 9, 59. [Google Scholar] [CrossRef]
- Burke, R.D.; Vagg, C.R.M.; Chalet, D.; Chesse, P. Heat transfer in turbocharger turbines under steady, pulsating and transient conditions. Int. J. Heat Fluid Flow 2015, 52, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Romagnoli, A.; Manivannan, A.; Rajoo, S.; Chiong, M.S.; Feneley, A.; Pesiridis, A.; Martinez-Botas, R.F. A review of heat transfer in turbochargers. Renew. Sustain. Energy Rev. 2017, 79, 1442–1460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ye, J.; Tan, D.; Feng, Z.; Luo, J.; Tan, Y.; Huang, Y. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel 2021, 290, 120039. [Google Scholar] [CrossRef]
- E, J.; Zhao, X.; Qiu, L.; Wei, K.; Zhang, Z.; Deng, Y.; Han, D.; Liu, G. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Convers. Manag. 2019, 193, 149–161. [Google Scholar] [CrossRef]
- Xie, B.; Peng, Q.; Yang, W.; Li, S.; E, J.; Li, Z.; Tao, M.; Zhang, A. Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic. Energy 2022, 239, 122341. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, J.; Zhong, Y.; Zou, Z.; Dong, R.; Gao, S.; Xu, W.; Tan, D. The effects of Mn-based catalysts on the selective catalytic reduction of NOx with NH3 at low temperature: A review. Fuel Process. Technol. 2022, 230, 107213. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Li, J.; Cao, C.; Wang, S.; Lv, J.; Zheng, W.; Tan, D. The development of diesel oxidation catalysts and the effect of sulfur dioxide on catalysts of metal-based diesel oxidation catalysts: A review. Fuel Process. Technol. 2022, 233, 107317. [Google Scholar] [CrossRef]
- Tan, Y.; E, J.; Chen, J.; Liao, G.; Zhang, F.; Li, J. Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air. Renew. Energy 2022, 186, 486–504. [Google Scholar] [CrossRef]
- Han, D.; E, J.; Deng, Y.; Zhao, X.; Feng, C.; Chen, J.; Leng, E.; Liao, G.; Zhang, F. A review of studies using hydrocarbon reduction measures for reducing hydrocarbon emissions from cold start of gasoline engine. Renew. Sustain. Energy Rev. 2021, 135, 110079. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, B.; Yang, W.; Tang, S.; Li, Z.; Zhou, P.; Luo, N. Effects of porosity and multilayers of porous medium on the hy-drogen-fueled combustion and micro-thermophotovoltaic. Renew. Energy 2021, 174, 391–402. [Google Scholar] [CrossRef]
- Katsanos, C.O.; Hountalas, D.T.; Zannis, T.C. Simulation of a heavy-duty diesel engine with electrical turbocompounding system using operating charts for turbocharger components and power turbine. Energy Convers. Manag. 2013, 76, 712–724. [Google Scholar] [CrossRef]
- Zhang, Z.; E, J.; Chen, J.; Zhao, X.; Zhang, B.; Deng, Y.; Peng, Q.; Yin, Z. Effects of boiling heat transfer on the performance enhancement of a medium speed diesel engine fueled with diesel and rapeseed methyl ester. Appl. Therm. Eng. 2020, 169, 114984. [Google Scholar] [CrossRef]
- Tian, L.; Wang, W.J.; Peng, Z.J. Effects of bearing outer clearance on the dynamic behaviours of the full floating ring bearing supported turbocharger rotor. Mech. Syst. Signal Process. 2012, 31, 155–175. [Google Scholar] [CrossRef]
- Fan, L.; Cheng, F.; Zhang, T.; Liu, G.; Yuan, J.; Mao, P. Visible-light photoredox-promoted desilylative allylation of α-silylamines: An efficient route to synthesis of homoallylic amines. Tetrahedron Lett. 2021, 81, 153357. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Xie, G.; Li, J.; Xu, W.; Jiang, F.; Huang, Y.; Tan, D. Investigation on the combustion and emission characteristics of diesel engine fueled with diesel/methanol/n-butanol blends. Fuel 2022, 314, 123088. [Google Scholar] [CrossRef]
- Serrano, J.R.; Tiseira, A.; García-Cuevas, L.M.; Usaquén, T.R. Adaptation of a 1-D tool to study transient thermal in turbocharger bearing housing. Appl. Therm. Eng. 2018, 134, 564–575. [Google Scholar] [CrossRef]
- Hartwig, J.; Darr, S.; Asencio, A. Assessment of existing two phase heat transfer coefficient and critical heat flux correlations for cryogenic flow boiling in pipe quenching experiments. Int. J. Heat Mass Transf. 2016, 93, 441–463. [Google Scholar] [CrossRef]
- E, J.; Zhang, Z.; Tu, Z.; Zuo, W.; Hu, W.; Han, D.; Jin, Y. Effect analysis on flow and boiling heat transfer performance of cooling water-jacket of bearing in the gasoline engine turbocharger. Appl. Therm. Eng. 2018, 130, 754–766. [Google Scholar] [CrossRef]
- Zhou, W.; Mao, L.; Hu, X.; He, Y. An optimized graphene oxide self-assembly surface for significantly enhanced boiling heat transfer. Carbon 2019, 150, 168–178. [Google Scholar] [CrossRef]
- Cai, D.; Liu, Y.; Liang, X.; Jiang, J.; Fan, M.; He, G. Experimental investigation of flow boiling heat transfer characteristics in smooth horizontal tubes using NH3/NaSCN solution as working fluid. Int. J. Heat Mass Transf. 2018, 127, 799–812. [Google Scholar] [CrossRef]
- Podowske, M.Z. Understanding two-phase flow and boiling heat transfer: Challenges and paradoxes. Nucl. Eng. Des. 2019, 354, 110185. [Google Scholar] [CrossRef]
- Mohammadi, A.; Yaghoubi, M. Two phase flow simulation for subcooled nucleat boiling heat transfer calculation in water jacket of diesel engine. J. Eng. Res. 2011, 22, 50–61. [Google Scholar] [CrossRef]
- Kouidri, A.; Madani, B.; Roubi, B. Experimental investigation of flow boiling in narrow channel. Int. J. Therm. Sci. 2015, 98, 90–98. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Lv, J.; Xu, W.; Tan, D.; Jiang, F.; Huang, H. Investigation on the effects of non-uniform porosity catalyst on SCR characteristic based on the field synergy analysis. J. Environ. Chem. Eng. 2022, 10, 107056. [Google Scholar] [CrossRef]
- Zuo, H.; Tan, J.; Wei, K.; Huang, Z.; Zhong, D.; Xie, F. Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system. Renew. Energy 2021, 168, 1308–1326. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, J.; Rui, D.; Zou, Z.; Gao, S.; Tan, D. Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends. Energy 2022, 249, 123733. [Google Scholar] [CrossRef]
- Zuo, H.; Liu, G.; E, J.; Zuo, W.; Wei, K.; Hu, W.; Tan, J.; Zhong, D. Catastrophic analysis on the stability of a large dish solar thermal power generation system with wind-induced vibration. Sol. Energy 2019, 183, 40–49. [Google Scholar] [CrossRef]
- Never, B.; Altin, I.; Gürgen, S. Risk ranking of maintenance activities in a two-stroke marine diesel engine via fuzzy AHP method. Appl. Ocean Res. 2021, 111, 102648. [Google Scholar] [CrossRef]
- Ryu, Y.; Lee, Y.; Nam, J. Performance and Emission Characteristics of Additives Enhanced Heavy Fuel Oil in Large Two-Stroke Marine Diesel engine. Fuel 2016, 182, 850–856. [Google Scholar] [CrossRef]
- Yan, P.Y.; Wang, L.N.; Guo, P.W.; Liu, T. Research on classification method of tunnel surrounding rock based on AHP-cloud model. Guangdong Archit. Civ. Eng. 2019, 26, 48–51. [Google Scholar]
- Alarcin, F.; Balin, A.; Demirel, H. Fuzzy AHP and Fuzzy TOPSIS integrated hybrid method for auxiliary systems of ship main engines. J. Mar. Eng. Technol. 2014, 13, 3–11. [Google Scholar]
- Hosseini, E.; Nickray, M.; Ghanbari, S. Optimized task scheduling for cost-latency trade-off in mobile fog computing using fuzzy analytical hierarchy process. Comput. Netw. 2022, 206, 108752. [Google Scholar] [CrossRef]
- Qin, G.; Zhang, M.; Yan, Q.; Xu, C.; Kammen, D. Comprehensive evaluation of regional energy internet using a fuzzy analytic hierarchy process based on cloud model: A case in China. Energy 2022, 228, 120569. [Google Scholar] [CrossRef]
- Cullum, J.; Binns, J.; Lonsdale, M.; Abbassi, R.; Garaniya, V. Risk-based maintenance scheduling with application to naval vessels and ships. Ocean Eng. 2018, 148, 476–485. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, J.; Xie, G.; Wang, S.; Ye, Y.; Huang, G.; Tan, D. Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel. Energy 2022, 254, 124269. [Google Scholar] [CrossRef]
- Nezarac, H.; Sereshki, F.; Ataei, M. Ranking of geological risks in mechanized tunneling by using Fuzzy Analytical Hierarchy Process (FAHP). Tunn. Undergr. Space Technol. 2015, 50, 358–364. [Google Scholar] [CrossRef]
- Chen, W.J. Rotordynamics and bearing design of turbochargers. Mech. Syst. Signal Process. 2012, 29, 77–89. [Google Scholar] [CrossRef]
- Smolík, L.; Dyk, S. Towards efficient and vibration-reducing full-floating ring bearings in turbochargers. Int. J. Mech. Sci. 2020, 175, 105516. [Google Scholar] [CrossRef]
- Abdelmadjid, C.; Mohamed, S.A.; Boussad, B. CFD Analysis of the Volute Geometry Effect on the Turbulent Air Flow through the Turbocharger Compressor. Energy Procedia 2013, 36, 746–755. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Wang, W.J.; Peng, Z.J. Nonlinear effects of unbalance in the rotor-floating ring bearing system of turbochargers. Mech. Syst. Signal Process. 2013, 34, 298–320. [Google Scholar] [CrossRef]
- Mantelli, L.; Ferrari, M.L.; Traverso, A. Dynamics and control of a turbocharged solid oxide fuel cell system. Appl. Therm. Eng. 2021, 191, 116862. [Google Scholar] [CrossRef]
- Ketata, A.; Driss, Z. Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission. Energy 2021, 236, 121447. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Li, J.; Lv, J.; Wang, S.; Zhong, Y.; Dong, R.; Gao, S.; Cao, C.; Tan, D. Investigation on combustion, performance and emission characteristics of a diesel engine fueled with diesel/alcohol/n-butanol blended fuels. Fuel 2022, 320, 123975. [Google Scholar] [CrossRef]
- Zhang, B.; E, J.; Gong, J.; Yuan, W.; Zhao, X.; Hu, W. Influence of structural and operating factors on performance degradation of the diesel particulate filter based on composite regeneration. Appl. Therm. Eng. 2017, 121, 838–852. [Google Scholar] [CrossRef]
Measurements | Instrument Type and Manufacturer | Measuring Range | Accuracy | Uncertainty (%) |
---|---|---|---|---|
Engine speed | JC3A/Xiangyi | 1–250,000 rpm | ±10 rpm | ±0.5 |
Fuel consumption | S8005C/Gregory | 0–1000 g | ±5 g/kW·h | ±1.5 |
Temperature | WRTK-112/Senxte | 0–1000 °C | ±1 °C | ±0.25 |
Air flow mass | CMF010/Emerson | 0–33.3 kg/min | ±1% | ±0.5 |
Pressure | PCI-6238/NI | 1–25 MPa | ±10 kPa | ±0.5 |
Evaluation Factors | Performance Index Scoring Range of Water-Cooling System of the Turbocharger | |||||
---|---|---|---|---|---|---|
Excellent | Good | Fair | Fairly Bad | Bad | ||
Evaluation value of water-cooled pipeline structure design S1 | S11 | |||||
S12 | ||||||
S13 | ||||||
S14 | ||||||
S15 | ||||||
S16 | ||||||
S17 | ||||||
S18 | ||||||
Evaluation value of water-cooling pipeline resistance design S2 | S21 | |||||
S22 | ||||||
S23 | ||||||
Evaluation value of bearing heat transfer design S3 | S31 | |||||
S32 | ||||||
S33 | ||||||
S34 | ||||||
S35 | ||||||
S36 | ||||||
S37 | ||||||
S38 | ||||||
S39 |
Level | Excellent | Good | Fair | Fairly Bad | Bad |
---|---|---|---|---|---|
Evaluation score | 0.90~1.0 | 0.80~0.89 | 0.70~0.79 | 0.60~0.69 | 0~0.59 |
Score Y | 95 | 80 | 65 | 50 | 35 |
Evaluation grade | Excellent | Good | Fair | Fairly bad | Bad |
Score | >90 | 80~90 | 60~79 | 50~59 | <50 |
Judgement Factors | Index Parameter Evaluation Grade | Wij | Wi | |||||
---|---|---|---|---|---|---|---|---|
Excellent | Good | Fair | Fairly Bad | Bad | ||||
S1 | S11 | 0.7 | 0.1 | 0.2 | 0.0 | 0.0 | 0.15 | 0.55 |
S12 | 0.6 | 0.2 | 0.1 | 0.1 | 0.0 | 0.14 | ||
S13 | 0.5 | 0.3 | 0.2 | 0.0 | 0.0 | 0.11 | ||
S14 | 0.7 | 0.2 | 0.1 | 0.0 | 0.0 | 0.12 | ||
S15 | 0.6 | 0.3 | 0.1 | 0.0 | 0.0 | 0.11 | ||
S16 | 0.5 | 0.4 | 0.1 | 0.0 | 0.0 | 0.12 | ||
S17 | 0.7 | 0.2 | 0.0 | 0.1 | 0.0 | 0.13 | ||
S18 | 0.8 | 0.1 | 0.1 | 0 | 0 | 0.14 | ||
S2 | S21 | 0.6 | 0.2 | 0.1 | 0.1 | 0.0 | 0.36 | 0.27 |
S22 | 0.5 | 0.3 | 0.2 | 0.0 | 0.0 | 0.31 | ||
S23 | 0.6 | 0.3 | 0.1 | 0.0 | 0.0 | 0.33 | ||
S3 | S31 | 0.6 | 0.2 | 0.1 | 0.1 | 0.0 | 0.11 | 0.18 |
S32 | 0.7 | 0.2 | 0.1 | 0.0 | 0.0 | 0.12 | ||
S33 | 0.7 | 0.3 | 0.0 | 0.0 | 0.0 | |||
S34 | 0.6 | 0.2 | 0.2 | 0.0 | 0.0 | 0.09 | ||
S35 | 0.8 | 0.1 | 0.1 | 0.0 | 0.0 | 0.08 | ||
S36 | 0.7 | 0.2 | 0.0 | 0.1 | 0.0 | 0.13 | ||
S37 | 0.6 | 0.3 | 0.1 | 0.0 | 0.0 | 0.11 | ||
S38 | 0.5 | 0.3 | 0.2 | 0.0 | 0.0 | 0.13 | ||
S39 | 0.6 | 0.4 | 0.0 | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhang, B.; Cui, S. Effects of Different Influencing Factors on Temperature Distributions and Cooling Performance of Turbocharger Bearing Casing. Processes 2022, 10, 2121. https://doi.org/10.3390/pr10102121
Liu B, Zhang B, Cui S. Effects of Different Influencing Factors on Temperature Distributions and Cooling Performance of Turbocharger Bearing Casing. Processes. 2022; 10(10):2121. https://doi.org/10.3390/pr10102121
Chicago/Turabian StyleLiu, Bo, Bin Zhang, and Shuwan Cui. 2022. "Effects of Different Influencing Factors on Temperature Distributions and Cooling Performance of Turbocharger Bearing Casing" Processes 10, no. 10: 2121. https://doi.org/10.3390/pr10102121
APA StyleLiu, B., Zhang, B., & Cui, S. (2022). Effects of Different Influencing Factors on Temperature Distributions and Cooling Performance of Turbocharger Bearing Casing. Processes, 10(10), 2121. https://doi.org/10.3390/pr10102121