How to (Not) Make a Perovskite Solar Panel: A Step-by-Step Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Substrate and Transparent Electrode
3.2. Perovskite
3.3. Selective Transporting Layers
3.3.1. Hole Transport Layer
3.3.2. Electron Transport Layer
3.4. Counter Electrode
3.5. Additional Material for the Panel
3.6. Lamination Process
3.7. Module Connection
3.8. Panel Lamination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.; Jeong, J.; Lu, H.; Lee, T.K.; Eickemeyer, F.T.; Liu, Y.; Choi, I.W.; Choi, S.J.; Jo, Y.; Kim, H.-B.; et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 2022, 375, 302–306. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hinken, D.; Rauer, M.; Hao, X. Solar cell efficiency tables (Version 60). Prog. Photovolt. Res. Appl. 2022, 30, 687–701. [Google Scholar] [CrossRef]
- Velilla, E.; Ramirez, D.; Uribe, J.-I.; Montoya, J.F.; Jaramillo, F. Outdoor performance of perovskite solar technology: Silicon comparison and competitive advantages at different irradiances. Sol. Energy Mater. Sol. Cells 2019, 191, 15–20. [Google Scholar] [CrossRef]
- Tress, W.; Domanski, K.; Carlsen, B.; Agarwalla, A.; Alharbi, E.A.; Graetzel, M.; Hagfeldt, A. Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat. Energy 2019, 4, 568–574. [Google Scholar] [CrossRef]
- Wu, M.; Haji Ladi, N.; Yi, Z.; Li, H.; Shen, Y.; Wang, M. Stability Issue of Perovskite Solar Cells under Real-World Operating Conditions. Energy Technol. 2020, 8, 1900744. [Google Scholar] [CrossRef]
- Pescetelli, S.; Agresti, A.; Viskadouros, G.; Razza, S.; Rogdakis, K.; Kalogerakis, I.; Spiliarotis, E.; Leonardi, E.; Mariani, P.; Sorbello, L.; et al. Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nat. Energy 2022, 7, 597–607. [Google Scholar] [CrossRef]
- Castriotta, L.A.; Matteocci, F.; Vesce, L.; Cinà, L.; Agresti, A.; Pescetelli, S.; Ronconi, A.; Löffler, M.; Stylianakis, M.M.; Di Giacomo, F.; et al. Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. ACS Appl. Mater. Interfaces 2021, 13, 11741–11754. [Google Scholar] [CrossRef]
- Castriotta, L.A.; Fuentes Pineda, R.; Babu, V.; Spinelli, P.; Taheri, B.; Matteocci, F.; Brunetti, F.; Wojciechowski, K.; Di Carlo, A. Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm2 Active Area. ACS Appl. Mater. Interfaces 2021, 13, 29576–29584. [Google Scholar] [CrossRef] [PubMed]
- Di Giacomo, F.; Castriotta, L.A.; Kosasih, F.U.; Di Girolamo, D.; Ducati, C.; Di Carlo, A. Upscaling Inverted Perovskite Solar Cells: Optimization of Laser Scribing for Highly Efficient Mini-Modules. Micromachines 2020, 11, 1127. [Google Scholar] [CrossRef]
- Zuo, C.; Bolink, H.J.; Han, H.; Huang, J.; Cahen, D.; Ding, L. Advances in Perovskite Solar Cells. Adv. Sci. 2016, 3, 1500324. [Google Scholar] [CrossRef] [PubMed]
- Castriotta, L.A.; Zendehdel, M.; Yaghoobi Nia, N.; Leonardi, E.; Löffler, M.; Paci, B.; Generosi, A.; Rellinghaus, B.; Di Carlo, A. Reducing Losses in Perovskite Large Area Solar Technology: Laser Design Optimization for Highly Efficient Modules and Minipanels. Adv. Energy Mater. 2022, 12, 2103420. [Google Scholar] [CrossRef]
- Castriotta, L.A.; Infantino, R.; Vesce, L.; Stefanelli, M.; Dessì, A.; Coppola, C.; Calamante, M.; Reginato, G.; Mordini, A.; Sinicropi, A.; et al. Stable Methylammonium-Free p-i-n Perovskite Solar Cells and Mini-Modules with Phenothiazine Dimers as Hole Transporting Materials. Energy Environ. Mater. 2022, e12455. [Google Scholar] [CrossRef]
- Wojciechowski, K.; Forgács, D.; Rivera, T. Industrial Opportunities and Challenges for Perovskite Photovoltaic Technology. Sol. RRL 2019, 3, 1900144. [Google Scholar] [CrossRef]
- Mariani, P.; Vesce, L.; Carlo, A.D. A novel class of dye-sensitized solar modules. Glass-plastic structure for mechanically stable devices. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–5. [Google Scholar]
- Saliba, M.; Correa-Baena, J.-P.; Wolff, C.M.; Stolterfoht, M.; Phung, N.; Albrecht, S.; Neher, D.; Abate, A. How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures. Chem. Mater. 2018, 30, 4193–4201. [Google Scholar] [CrossRef]
- Turren-Cruz, S.-H.; Hagfeldt, A.; Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 2018, 362, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Gharibzadeh, S.; Fassl, P.; Hossain, I.M.; Rohrbeck, P.; Frericks, M.; Schmidt, M.; Duong, T.; Khan, M.R.; Abzieher, T.; Nejand, B.A.; et al. Two birds with one stone: Dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy Environ. Sci. 2021, 14, 5875–5893. [Google Scholar] [CrossRef]
- Khadka, D.B.; Shirai, Y.; Yanagida, M.; Tadano, T.; Miyano, K. Interfacial Embedding for High-Efficiency and Stable Methylammonium-Free Perovskite Solar Cells with Fluoroarene Hydrazine. Adv. Energy Mater. 2022, 2202029. [Google Scholar] [CrossRef]
- Bu, T.; Ono, L.K.; Li, J.; Su, J.; Tong, G.; Zhang, W.; Liu, Y.; Zhang, J.; Chang, J.; Kazaoui, S.; et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 2022, 7, 528–536. [Google Scholar] [CrossRef]
- Reddy, S.H.; Di Giacomo, F.; Di Carlo, A. Low-Temperature-Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review. Adv. Energy Mater. 2022, 12, 2103534. [Google Scholar] [CrossRef]
- Taheri, B.; De Rossi, F.; Lucarelli, G.; Castriotta, L.A.; Di Carlo, A.; Brown, T.M.; Brunetti, F. Laser-Scribing Optimization for Sprayed SnO2-Based Perovskite Solar Modules on Flexible Plastic Substrates. ACS Appl. Energy Mater. 2021, 4, 4507–4518. [Google Scholar] [CrossRef]
- Serpetzoglou, E.; Konidakis, I.; Kakavelakis, G.; Maksudov, T.; Kymakis, E.; Stratakis, E. Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 43910–43919. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Chao, L.; Chen, C.; Ran, X.; Wang, Y.; Niu, T.; Lv, S.; Wu, H.; Xia, Y.; Ran, C.; et al. In Situ Interface Engineering for Highly Efficient Electron-Transport-Layer-Free Perovskite Solar Cells. Nano Lett. 2020, 20, 5799–5806. [Google Scholar] [CrossRef]
- Alsalloum, A.Y.; Turedi, B.; Zheng, X.; Mitra, S.; Zhumekenov, A.A.; Lee, K.J.; Maity, P.; Gereige, I.; AlSaggaf, A.; Roqan, I.S.; et al. Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbI3 Inverted Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 657–662. [Google Scholar] [CrossRef]
- Babaei, A.; Dreessen, C.; Sessolo, M.; Bolink, H.J. High voltage vacuum-processed perovskite solar cells with organic semiconducting interlayers. RSC Adv. 2020, 10, 6640–6646. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dewi, H.A.; Wang, H.; Lew, J.H.; Mathews, N.; Mhaisalkar, S.; Bruno, A. Design of Perovskite Thermally Co-Evaporated Highly Efficient Mini-Modules with High Geometrical Fill Factors. Sol. RRL 2020, 4, 2000473. [Google Scholar] [CrossRef]
- Gilani, T.H.; Rabchuk, D. Electrical resistivity of gold thin film as a function of film thickness. Can. J. Phys. 2018, 96, 272–274. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, K.; Zhang, H.; Ding, Y.; Yu, Q. Encapsulation of PV Modules Using Ethylene Vinyl Acetate Copolymer as the Encapsulant. Macromol. React. Eng. 2015, 9, 522–529. [Google Scholar] [CrossRef]
- Lan, D.; Green, M.A. Combatting temperature and reverse-bias challenges facing perovskite solar cells. Joule 2022, 6, 1782–1797. [Google Scholar] [CrossRef]
Transparent Conducting Thin Film | Work Function (eV) | Roughness (nm) | Deposition Method | Electrical Stability |
---|---|---|---|---|
In2O3, In2O3:Sn (ITO) | 4.1–5.5 | 2–10 | Sputtering | Weak/medium |
SnO2, SnO2:F (FTO) | 4.2–4.4 | 12–17 20–40 | Sputtering Spray | Weak/medium |
ZnO, ZnO:Al (AZO) | 4.3–4.4 | 40–90 | Oxidation | Weak |
ZnO, ZnO:In (IZO) | 4.3–4.4 | 8–17 | Sputtering | Weak |
PEDOT:PSS | 5.1 | 1–5 | Spin-coating | Medium |
ITO/Ag/ITO | 4.85 | 1–3 | Sputtering | High |
ZnO/Au/ZnO | 4.80 | 2–4 | Sputtering | High |
Layer | Material Choice | Deposition Technique | Main Reason |
---|---|---|---|
Substrate and Transparent electrode | Glass/FTO | Pilkington supplier | Robust |
Perovskite | MA-free | Blade Coating | Intrinsic stable |
HTL | PTAA | Blade Coating | Thermal stable |
ETL | C60/BCP | Thermal Evaporation | Compact |
Counter electrode | Au | Thermal Evaporation | P3 process optimized |
Material | Purpose |
---|---|
1 extra clear 3 mm glass sheet 65 × 85 cm2 | Panel Front Screen |
1 opaque flexible sheet 65 × 85 cm2 | Panel Backsheet |
3 ethylene vinyl acetate (EVA) sheets 65 × 85 cm2 | Panel front and back encapsulants |
~12 m of butyl rubber | Lateral sealing |
12 non-conductive sheets 18 × 18 cm | Modules protective film |
1 Kapton Polyimide Tape | Fix Electric Poles path besides modules |
Fix Electric Poles path besides modules | |
13 Metal conductive 5 cm wires | Module connection |
2 Metal conductive 50 cm wires | Electric Poles path |
1 Metal conductive tape | Fix metal wires between modules |
1 Black Spray Paint | Front Active Area Mask |
1 Paper Tape Roll | Cover Panel Active Area from Spray |
1 Junction Box | Connect electric pole wires into the final 2 terminal cables |
Module Number | FF (%)] | Isc (mA) | Voc (V) | PCE (%) |
---|---|---|---|---|
1 | 42.8 | 101.2 | 19.3 | 7.59 |
2 | 44.1 | 86.1 | 18.9 | 6.52 |
3 | 38.2 | 94.5 | 18.5 | 5.07 |
4 | 35.7 | 99.2 | 18.7 | 5.03 |
5 | 62.6 | 98.8 | 18.2 | 10.4 |
6 | 42.5 | 72.2 | 18.8 | 4.05 |
7 | 45.1 | 71.5 | 18.9 | 4.27 |
8 | 44.1 | 71.7 | 18.7 | 4.15 |
9 | 46.1 | 71.8 | 18.9 | 4.38 |
10 | 47.9 | 86.6 | 18.6 | 8.54 |
11 | 50.6 | 80.2 | 17.7 | 8.05 |
12 | 46.1 | 107.1 | 16.5 | 9.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castriotta, L.A.; Leonardi, E. How to (Not) Make a Perovskite Solar Panel: A Step-by-Step Process. Processes 2022, 10, 1980. https://doi.org/10.3390/pr10101980
Castriotta LA, Leonardi E. How to (Not) Make a Perovskite Solar Panel: A Step-by-Step Process. Processes. 2022; 10(10):1980. https://doi.org/10.3390/pr10101980
Chicago/Turabian StyleCastriotta, Luigi Angelo, and Enrico Leonardi. 2022. "How to (Not) Make a Perovskite Solar Panel: A Step-by-Step Process" Processes 10, no. 10: 1980. https://doi.org/10.3390/pr10101980
APA StyleCastriotta, L. A., & Leonardi, E. (2022). How to (Not) Make a Perovskite Solar Panel: A Step-by-Step Process. Processes, 10(10), 1980. https://doi.org/10.3390/pr10101980